12 resultados para Physics, Mathematical
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.
Resumo:
A detailed study of the electronic structure and bonding of the pentahalides of group 5 elements V, Nb, Ta, and element 105, hahnium (and Pa) has been carried out using relativistic molecular cluster Dirac-Slater discrete-variational method. A number of calculations have been performed for different geometries and molecular bond distances. The character of the bonding has been analyzed using the Mulliken population analysis of the molecular orbitals. It is shown that hahnium is a typical group 5 element. In a great number of properties it continues trends in the group. Some peculiarities in the electronic structure of HaCl_5 result from relativistic effects.
Resumo:
Relativistic self-consistent charge Dirac-Slater discrete variational method calculations have been done for the series of molecules MBr_5, where M = Nb, Ta, Pa, and element 105, Ha. The electronic structure data show that the trends within the group 5 pentabromides resemble those for the corresponding pentaclorides with the latter being more ionic. Estimation of the volatility of group 5 bromides has been done on the basis of the molecular orbital calculations. According to the results of the theoretical interpretation HaBr_5 seems to be more volatile than NbBr_5 and TaBr_5.
Resumo:
Electronic structures of MOCl_3 and MOBr_3 molecules, where M = V, Nb, Ta, Pa, and element 105, hahnium, have been calculated using the relativistic Dirac-Slater discrete variational method. The character of bonding has been analyzed using the Mulliken population analysis of the molecular orbitals. It was shown that hahnium oxytrihalides have similar properties to oxytrihalides of Nb and Ta and that hahnium has the highest tendency to form double bond with oxygen. Some peculiarities in the electronic structure of HaOCl_3 and HaOBr_3 result from relativistic effects. Volatilities of the oxytrihalides in comparison with the corresponding pentahalides were considered using results of the present calculations. Higher ionic character and lower covalency as well as the presence of dipole moments in MOX_3 (X = Cl, Br) molecules compared to analogous MX_5 ones are the factors contributing to their lower volatilities.
Resumo:
Results of relativistic (Dirac-Slater and Dirac-Fock) and nonrelativistic (Hartree-Fock-Slater) atomic and molecular calculations have been compared for the group 5 elements Nb, Ta, and Ha and their compounds MCl_5, to elucidate the influence of relativistic effects on their properties especially in going from the 5d element Ta to the 6d element Ha. The analysis of the radial distribution of the valence electrons of the metals for electronic configurations obtained as a result of the molecular calculations and their overlap with ligands show opposite trends in behavior for ns_1/2, np_l/2, and (n -1 )d_5/2 orbitals for Ta and Ha in the relativistic and nonrelativistic cases. Relativistic contraction and energetic stabilization of the ns_1/2 and np_l/2 wave functions and expansion and destabilization of the (n-1)d_5/2 orbitals make hahnium pentahalide more covalent than tantalum pentahalide and increase the bond strength. The nonrelativistic treatment of the wave functions results in an increase in ionicity of the MCl_5 molecules in going from Nb to Ha making element Ha an analog of V. Different trends for the relativistic and nonrelativistic cases are also found for ionization potentials, electronic affinities, and energies of charge-transfer transitions as well as the stability of the maximum oxidation state.
Resumo:
The paper will consist of three parts. In part I we shall present some background considerations which are necessary as a basis for what follows. We shall try to clarify some basic concepts and notions, and we shall collect the most important arguments (and related goals) in favour of problem solving, modelling and applications to other subjects in mathematics instruction. In the main part II we shall review the present state, recent trends, and prospective lines of development, both in empirical or theoretical research and in the practice of mathematics instruction and mathematics education, concerning problem solving, modelling, applications and relations to other subjects. In particular, we shall identify and discuss four major trends: a widened spectrum of arguments, an increased globality, an increased unification, and an extended use of computers. In the final part III we shall comment upon some important issues and problems related to our topic.
Resumo:
This paper aims at giving a concise survey of the present state-of-the-art of mathematical modelling in mathematics education and instruction. It will consist of four parts. In part 1, some basic concepts relevant to the topic will be clarified and, in particular, mathematical modelling will be defined in a broad, comprehensive sense. Part 2 will review arguments for the inclusion of modelling in mathematics teaching at schools and universities, and identify certain schools of thought within mathematics education. Part 3 will describe the role of modelling in present mathematics curricula and in everyday teaching practice. Some obstacles for mathematical modelling in the classroom will be analysed, as well as the opportunities and risks of computer usage. In part 4, selected materials and resources for teaching mathematical modelling, developed in the last few years in America, Australia and Europe, will be presented. The examples will demonstrate many promising directions of development.
Resumo:
The paper will consist of three parts. In part I we shall present some background considerations which are necessary as a basis for what follows. We shall try to clarify some basic concepts and notions, and we shall collect the most important arguments (and related goals) in favour of problem solving, modelling and applications to other subjects in mathematics instruction. In the main part II we shall review the present state, recent trends, and prospective lines of development, both in empirical or theoretical research and in the practice of mathematics instruction and mathematics education, concerning (applied) problem solving, modelling, applications and relations to other subjects. In particular, we shall identify and discuss four major trends: a widened spectrum of arguments, an increased globality, an increased unification, and an extended use of computers. In the final part III we shall comment upon some important issues and problems related to our topic.
Resumo:
Die q-Analysis ist eine spezielle Diskretisierung der Analysis auf einem Gitter, welches eine geometrische Folge darstellt, und findet insbesondere in der Quantenphysik eine breite Anwendung, ist aber auch in der Theorie der q-orthogonalen Polynome und speziellen Funktionen von großer Bedeutung. Die betrachteten mathematischen Objekte aus der q-Welt weisen meist eine recht komplizierte Struktur auf und es liegt daher nahe, sie mit Computeralgebrasystemen zu behandeln. In der vorliegenden Dissertation werden Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen vorgestellt. Alle Algorithmen sind in dem Maple-Package qFPS, welches integraler Bestandteil der Arbeit ist, implementiert. Nachdem in den ersten beiden Kapiteln Grundlagen geschaffen werden, werden im dritten Kapitel Algorithmen präsentiert, mit denen man zu einer q-holonomen Funktion q-holonome Rekursionsgleichungen durch Kenntnis derer q-Shifts aufstellen kann. Operationen mit q-holonomen Rekursionen werden ebenfalls behandelt. Im vierten Kapitel werden effiziente Methoden zur Bestimmung polynomialer, rationaler und q-hypergeometrischer Lösungen von q-holonomen Rekursionen beschrieben. Das fünfte Kapitel beschäftigt sich mit q-hypergeometrischen Potenzreihen bzgl. spezieller Polynombasen. Wir formulieren einen neuen Algorithmus, der zu einer q-holonomen Rekursionsgleichung einer q-hypergeometrischen Reihe mit nichttrivialem Entwicklungspunkt die entsprechende q-holonome Rekursionsgleichung für die Koeffizienten ermittelt. Ferner können wir einen neuen Algorithmus angeben, der umgekehrt zu einer q-holonomen Rekursionsgleichung für die Koeffizienten eine q-holonome Rekursionsgleichung der Reihe bestimmt und der nützlich ist, um q-holonome Rekursionen für bestimmte verallgemeinerte q-hypergeometrische Funktionen aufzustellen. Mit Formulierung des q-Taylorsatzes haben wir schließlich alle Zutaten zusammen, um das Hauptergebnis dieser Arbeit, das q-Analogon des FPS-Algorithmus zu erhalten. Wolfram Koepfs FPS-Algorithmus aus dem Jahre 1992 bestimmt zu einer gegebenen holonomen Funktion die entsprechende hypergeometrische Reihe. Wir erweitern den Algorithmus dahingehend, dass sogar Linearkombinationen q-hypergeometrischer Potenzreihen bestimmt werden können. ________________________________________________________________________________________________________________