22 resultados para Photothermal laser heating

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning Probe Microscopy (SPM) has become of fundamental importance for research in area of micro and nano-technology. The continuous progress in these fields requires ultra sensitive measurements at high speed. The imaging speed limitation of the conventional Tapping Mode SPM is due to the actuation time constant of piezotube feedback loop that keeps the tapping amplitude constant. In order to avoid this limit a deflection sensor and an actuator have to be integrated into the cantilever. In this work has been demonstrated the possibility of realisation of piezoresistive cantilever with an embedded actuator. Piezoresistive detection provides a good alternative to the usual optical laser beam deflection technique. In frames of this thesis has been investigated and modelled the piezoresistive effect in bulk silicon (3D case) for both n- and p-type silicon. Moving towards ultra-sensitive measurements it is necessary to realize ultra-thin piezoresistors, which are well localized to the surface, where the stress magnitude is maximal. New physical effects such as quantum confinement which arise due to the scaling of the piezoresistor thickness was taken into account in order to model the piezoresistive effect and its modification in case of ultra-thin piezoresistor (2D case). The two-dimension character of the electron gas in n-type piezoresistors lead up to decreasing of the piezoresistive coefficients with increasing the degree of electron localisation. Moreover for p-type piezoresistors the predicted values of the piezoresistive coefficients are higher in case of localised holes. Additionally, to the integration of the piezoresistive sensor, actuator integrated into the cantilever is considered as fundamental for realisation of fast SPM imaging. Actuation of the beam is achieved thermally by relying on differences in the coefficients of thermal expansion between aluminum and silicon. In addition the aluminum layer forms the heating micro-resistor, which is able to accept heating impulses with frequency up to one megahertz. Such direct oscillating thermally driven bimorph actuator was studied also with respect to the bimorph actuator efficiency. Higher eigenmodes of the cantilever are used in order to increase the operating frequencies. As a result the scanning speed has been increased due to the decreasing of the actuation time constant. The fundamental limits to force sensitivity that are imposed by piezoresistive deflection sensing technique have been discussed. For imaging in ambient conditions the force sensitivity is limited by the thermo-mechanical cantilever noise. Additional noise sources, connected with the piezoresistive detection are negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many nonlinear optical microscopy techniques based on the high-intensity nonlinear phenomena were developed recent years. A new technique based on the minimal-invasive in-situ analysis of the specific bound elements in biological samples is described in the present work. The imaging-mode Laser-Induced Breakdown Spectroscopy (LIBS) is proposed as a combination of LIBS, femtosecond laser material processing and microscopy. The Calcium distribution in the peripheral cell wall of the sunflower seedling (Helianthus Annuus L.) stem is studied as a first application of the imaging-mode LIBS. At first, several nonlinear optical microscopy techniques are overviewed. The spatial resolution of the imaging-mode LIBS microscope is discussed basing on the Point-Spread Function (PSF) concept. The primary processes of the Laser-Induced Breakdown (LIB) are overviewed. We consider ionization, breakdown, plasma formation and ablation processes. Water with defined Calcium salt concentration is used as a model of the biological object in the preliminary experiments. The transient LIB spectra are measured and analysed for both nanosecond and femtosecond laser excitation. The experiment on the local Calcium concentration measurements in the peripheral cell wall of the sunflower seedling stem employing nanosecond LIBS shows, that nanosecond laser is not a suitable excitation source for the biological applications. In case of the nanosecond laser the ablation craters have random shape and depth over 20 µm. The analysis of the femtosecond laser ablation craters shows the reproducible circle form. At 3.5 µJ laser pulse energy the diameter of the crater is 4 µm and depth 140 nm for single laser pulse, which results in 1 femtoliter analytical volume. The experimental result of the 2 dimensional and surface sectioning of the bound Calcium concentrations is presented in the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the optical properties of supported noble metal nanoparticles, which are dominated by the so-called Mie resonance and are strongly dependent on the particles’ morphology. For this reason, characterization and control of the dimension of these systems are desired in order to optimize their applications. Gold and silver nanoparticles have been produced on dielectric supports like quartz glass, sapphire and rutile, by the technique of vapor deposition under ultra-high vacuum conditions. During the preparation, coalescence is observed as an important mechanism of cluster growth. The particles have been studied in situ by optical transmission spectroscopy and ex situ by atomic force microscopy. It is shown that the morphology of the aggregates can be regarded as oblate spheroids. A theoretical treatment of their optical properties, based on the quasistatic approximation, and its combination with results obtained by atomic force microscopy give a detailed characterization of the nanoparticles. This method has been compared with transmission electron microscopy and the results are in excellent agreement. Tailoring of the clusters’ dimensions by irradiation with nanosecond-pulsed laser light has been investigated. Selected particles are heated within the ensemble by excitation of the Mie resonance under irradiation with a tunable laser source. Laser-induced coalescence prevents strongly tailoring of the particle size. Nevertheless, control of the particle shape is possible. Laser-tailored ensembles have been tested as substrates for surface-enhanced Raman spectroscopy (SERS), leading to an improvement of the results. Moreover, they constitute reproducible, robust and tunable SERS-substrates with a high potential for specific applications, in the present case focused on environmental protection. Thereby, these SERS-substrates are ideally suited for routine measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first direct observation of a hyperfine splitting in the optical regime is reported. The wavelength of the M1 transition between the F = 4 and F = 5 hyperfine levels of the ground state of hydrogenlike ^209 Bi^82+ was measured to be \lamda_0 = 243.87(4) nm by detection of laser induced fluorescence at the heavy-ion storage ring ESR at GSI. In addition, the lifetime of the laser excited F = 5 sublevel was determined to be \tau_0 = 0.351(16) ms. The method can be applied to a number of other nuclei and should allow a novel test of QED corrections in the previously unexplored combination of strong magnetic and electric fields in highly charged ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the first femtosecond time-resolved experiments in cluster physics. The photofragmentation dynamics of small sodium cluster ions Na_n ^+ have been studied with pump-probe techniques. Ultrashort laser pulses of 60-fs duration are employed to photoionize the sodium clusters and to probe the photofragments. We find that the ejection of neutral dimer Na_2 and, observed for the first time, neutral trimer Na_3 photofragments occur on ultrashort time scales of 2.5 and 0.4 ps, respectively. This and the absence of cluster heating reveals that direct photoinduced fragmentation processes are important at short times rather than the statistical unimolecular decay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond laser pulses generated from an amplified coiliding pulse modelocked ring dye laser have been employed in molecular beam experiments to study the dynamics and the pathways of multiphoton induced ionization, autoionization and fragmentation of Na2 . Energy distributions of photoelectrons arising from these processes and the mass and released kinetic energy of the corresponding fragment ions are measured by time-of-flight spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real-time dynamics of multiphoton ionization and fragmentation of molecules Na_2 and Na_3 has been studied in molecular beam experiments employing ion and electron spectroscopy together with femtosecond pump-probe techniques. Experiments with Na_2 and Na_3 reveal unexpected features of the dynamics of the absorption of several photons as seen in the one- and three-dimensional vibrational wave packet motion in different potential surfaces and in high laser fields: In Na_2 a second major resonance-enhanced multiphoton ionization (REMPI) process is observed, involving the excitation of two electrons and subsequent electronic autoionization. The possibility of controlling a reaction by controlling the duration of propagation of a wave packet on an electronically-excited surface is demonstrated. In high laser fields, the contributions from direct photoionization and from the second REMPI process to the total ion yield change, due to different populations in the electronic states participating in the multiphoton ionization (MPI) processes. In addition, a vibrational wave packet motion in the electronic ground state is induced through stimulated emission pumping by the pump laser. The 4^1 \summe^+_g shelf state of Na_2 is given as an example for performing frequency spectroscopy of highlying electronic states in the time domain. Pure wave packet effects, such as the spreading and the revival of a vibrational wave packet, are investigated. The three-dimensional wave packet motion in the Na_3 reflects the normal modes in the X and B states, and shows in addition the pseudorotational motion in the B state in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond pump/probe multiphoton ionization experiments on Na_2 molecules are performed. The dependence of the total Na^+_2 ion signal on the delay time and the intensity of the femtosecond laser pulses is studied in detail. It is observed that molecular vibrational wavepacket motion in different electronic states dominates the time dependence of the ion signal. For higher laser intensities the relative contributions from the A ^1 \summe^+_u and the 2 ^1 \produkt__g states change dramatically, indicating the increasing importance of a two-electron versus a one-electron process. For even stronger fields (10 ^12 W/ cm²) a vibrational wavepacket in the electronic ground state X ^1 \summe^+_g is formed and its dynamics is also observed in the transient Na^+_2 signal. Time-dependent quantum calculations are presented. The theoretical results agree well with the experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Arbeit behandelt die numerische Untersuchung von Wasserstoff-Moleküldynamik in starken Laserfeldern. Im Speziellen wird die Struktur von Ionisationsspektren bei Einfach-Photoionisation betrachtet. Korrelationen zwischen Elektron- und Kernbewegung werden identifiziert und mit Effekten in den Energiespektren in Verbindung gebracht. Dabei wird stets auf die Integration der zeitabhängigen Schrödingergleichung zurückgegriffen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excimerlaser sind gepulste Gaslaser, die Laseremission in Form von Linienstrahlung – abhängig von der Gasmischung – im UV erzeugen. Der erste entladungsgepumpte Excimerlaser wurde 1977 von Ischenko demonstriert. Alle kommerziell verfügbaren Excimerlaser sind entladungsgepumpte Systeme. Um eine Inversion der Besetzungsdichte zu erhalten, die notwendig ist, um den Laser zum Anschwingen zu bekommen, muss aufgrund der kurzen Wellenlänge sehr stark gepumpt werden. Diese Pumpleistung muss von einem Impulsleistungsmodul erzeugt werden. Als Schaltelement gebräuchlich sind Thyratrons, Niederdruckschaltröhren, deren Lebensdauer jedoch sehr limitiert ist. Deshalb haben sich seit Mitte der 1990iger Jahre Halbleiterschalter mit Pulskompressionsstufen auch in dieser Anwendung mehr und mehr durchgesetzt. In dieser Arbeit wird versucht, die Pulskompression durch einen direkt schaltenden Halbleiterstapel zu ersetzen und dadurch die Verluste zu reduzieren sowie den Aufwand für diese Pulskompression einzusparen. Zudem kann auch die maximal mögliche Repetitionsrate erhöht werden. Um die Belastung der Bauelemente zu berechnen, wurden für alle Komponenten möglichst einfache, aber leistungsfähige Modelle entwickelt. Da die normalerweise verfügbaren Daten der Bauelemente sich aber auf andere Applikationen beziehen, mussten für alle Bauteile grundlegende Messungen im Zeitbereich der späteren Applikation gemacht werden. Für die nichtlinearen Induktivitäten wurde ein einfaches Testverfahren entwickelt um die Verluste bei sehr hohen Magnetisierungsgeschwindigkeiten zu bestimmen. Diese Messungen sind die Grundlagen für das Modell, das im Wesentlichen eine stromabhängige Induktivität beschreibt. Dieses Modell wurde für den „magnetic assist“ benützt, der die Einschaltverluste in den Halbleitern reduziert. Die Impulskondensatoren wurden ebenfalls mit einem in der Arbeit entwickelten Verfahren nahe den späteren Einsatzparametern vermessen. Dabei zeigte sich, dass die sehr gebräuchlichen Class II Keramikkondensatoren für diese Anwendung nicht geeignet sind. In der Arbeit wurden deshalb Class I Hochspannungs- Vielschicht- Kondensatoren als Speicherbank verwendet, die ein deutlich besseres Verhalten zeigen. Die eingesetzten Halbleiterelemente wurden ebenfalls in einem Testverfahren nahe den späteren Einsatzparametern vermessen. Dabei zeigte sich, dass nur moderne Leistungs-MOSFET´s für diesen Einsatz geeignet sind. Bei den Dioden ergab sich, dass nur Siliziumkarbid (SiC) Schottky Dioden für die Applikation einsetzbar sind. Für die Anwendung sind prinzipiell verschiedene Topologien möglich. Bei näherer Betrachtung zeigt sich jedoch, dass nur die C-C Transfer Anordnung die gewünschten Ergebnisse liefern kann. Diese Topologie wurde realisiert. Sie besteht im Wesentlichen aus einer Speicherbank, die vom Netzteil aufgeladen wird. Aus dieser wird dann die Energie in den Laserkopf über den Schalter transferiert. Aufgrund der hohen Spannungen und Ströme müssen 24 Schaltelemente in Serie und je 4 parallel geschaltet werden. Die Ansteuerung der Schalter wird über hochisolierende „Gate“-Transformatoren erreicht. Es zeigte sich, dass eine sorgfältig ausgelegte dynamische und statische Spannungsteilung für einen sicheren Betrieb notwendig ist. In der Arbeit konnte ein Betrieb mit realer Laserkammer als Last bis 6 kHz realisiert werden, der nur durch die maximal mögliche Repetitionsrate der Laserkammer begrenzt war.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is a contribution to the study of laser-solid interaction. Despite the numerous applications resulting from the recent use of laser technology, there is still a lack of satisfactory answers to theoretical questions regarding the mechanism leading to the structural changes induced by femtosecond lasers in materials. We provide here theoretical approaches for the description of the structural response of different solids (cerium, samarium sulfide, bismuth and germanium) to femtosecond laser excitation. Particular interest is given to the description of the effects of the laser pulse on the electronic systems and changes of the potential energy surface for the ions. Although the general approach of laser-excited solids remains the same, the potential energy surface which drives the structural changes is calculated with different theoretical models for each material. This is due to the difference of the electronic properties of the studied systems. We use the Falicov model combined with an hydrodynamic method to study photoinduced phase changes in cerium. The local density approximation (LDA) together with the Hubbard-type Hamiltonian (LDA+U) in the framework of density functional theory (DFT) is used to describe the structural properties of samarium sulfide. We parametrize the time-dependent potential energy surface (calculated using DFT+ LDA) of bismuth on which we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent $A_{1g}$ phonons. On the basis of a time-dependent potential energy surface calculated from a non-orthogonal tight binding Hamiltonian, we perform molecular dynamics simulation to analyze the time evolution (coherent phonons, ultrafast nonthermal melting) of germanium under laser excitation. The thermodynamic equilibrium properties of germanium are also reported. With the obtained results we are able to give many clarifications and interpretations of experimental results and also make predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis concerns with the main aspects of medical trace molecules detection by means of intracavity laser absorption spectroscopy (ICLAS), namely with the equirements for highly sensitive, highly selective, low price, and compact size sensor. A novel two modes semiconductor laser sensor is demonstrated. Its operation principle is based on the competition between these two modes. The sensor sensitivity is improved when the sample is placed inside the two modes laser cavity, and the competition between the two modes exists. The effects of the mode competition in ICLAS are discussed theoretically and experimentally. The sensor selectivity is enhanced using external cavity diode laser (ECDL) configuration, where the tuning range only depends on the external cavity configuration. In order to considerably reduce the sensor cost, relative intensity noise (RIN) is chosen for monitoring the intensity ratio of the two modes. RIN is found to be an excellent indicator for the two modes intensity ratio variations which strongly supports the sensor methodology. On the other hand, it has been found that, wavelength tuning has no effect on the RIN spectrum which is very beneficial for the proposed detection principle. In order to use the sensor for medical applications, the absorption line of an anesthetic sample, propofol, is measured. Propofol has been dissolved in various solvents. RIN has been chosen to monitor the sensor response. From the measured spectra, the sensor sensitivity enhancement factor is found to be of the order of 10^(3) times of the conventional laser spectroscopy.