2 resultados para Phédon 72-77
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Livestock production contributes substantially to the livelihoods of poor rural farmers in Pakistan; strengthening pastoral communities plays an imperative role in the country’s thrive for poverty alleviation. Intestinal helminths constitute a major threat for pastoral livestock keepers in the whole country because chronic infestation leads to distinct losses in livestock productivity, particularly the growth of young animals. Synthetic anthelmintics have long been considered the only effective way of controlling this problem but high prices, side effects and chemical residues/toxicity problems, or development of resistance, lead to their very limited use in many pastoral systems. Additionally, poor pastoralists in remote areas of Pakistan hardly have access to appropriate anthelmintic drugs, which are also relatively expensive due to the long routes of transportation. The search for new and more sustainable ways of supporting livestock keepers in remote areas has given rise to studies of ethno-botanicals or traditional plant-based remedies to be used in livestock health care. Plant-based remedies are cheap or free of cost, environmentally safe and generally create no problem of drug resistance; they thus might substitute allopathic drugs. Furthermore, these remedies are easily available in remote areas and simple to prepare and/or administer. Cholistan desert is a quite poor region of Pakistan and the majority of its inhabitants are practicing a nomadic life. The region’s total livestock population (1.29 million heads) is almost twice that of the human population. Livestock husbandry is the primordial occupation of the communities and traditionally wealth assessment was based on the number of animals, especially goats and sheep, owned by an individual. Fortunately, about 60% of this desert region is richly endowed with highly adapted grasses, shrubs and trees. This natural flora has a rich heritage of scientifically unexplored botanical pharmacopoeia. Against this background, the present research project that was conducted under the umbrella of the International Center for Development and Decent Work at Kassel University, focused on a development aspect: in the Cholistan desert region it was firstly examined how pastoralists manage their livestock, which major health problems they face for the different animal species, and which of the naturally occurring plants they use for the treatment of animal diseases (Chapter 2). For this purpose, a baseline survey was carried out across five locations in Cholistan, using a structured questionnaire to collect data from 100 livestock farmers (LF) and 20 local healers (LH). Most of LF and LH were illiterate (66%; 70%). On average, LH had larger herds (109 animals) than LF (85 animals) and were more experienced in livestock husbandry and management. On average LF spent about 163 Euro per year on the treatment of their livestock, with a huge variability in expenditures. Eighty-six traditional remedies based on 64 plants belonging to 43 families were used. Capparaceae was the botanical family with the largest number of species used (4), followed by Chenopodiaceae, Poaceae, Solanaceae and Zygophyllaceae (3). The plants Capparis decidua (n=55 mentions), Salsola foetida (n=52), Suaeda fruticosa (n=46), Haloxylon salicornicum (n=42) and Haloxylon recurvum (n=39) were said to be most effective against the infestations with gastrointestinal parasites. Aerial parts (43%), leaves (26%), fruits (9%), seeds and seed oils (9%) were the plant parts frequently used for preparation of remedies, while flowers, roots, bulbs and pods were less frequently used (<5%). Common preparations were decoction, jaggery and ball drench; oral drug administration was very common. There was some variation in the doses used for different animal species depending on age, size and physical condition of the animal and severity of the disease. In a second step the regionally most prevalent gastrointestinal parasites of sheep and goats were determined (Chapter 3) in 500 animals per species randomly chosen from pastoral herds across the previously studied five localities. Standard parasitological techniques were applied to identify the parasites in faecal samples manually collected at the rectum. Overall helminth prevalence was 78.1% across the 1000 animals; pure nematode infestations were most prevalent (37.5%), followed by pure trematode (7.9%), pure cestode (2.6%) and pure protozoa infestations (0.8%). Mixed infestations with nematodes and trematodes occurred in 6.4% of all animals, mixed nematode-cestode infestations in 3.8%, and all three groups were found in 19.1% of the sheep and goats. In goats more males (81.1%) than females (77.0%) were infested, the opposite was found in sheep (73.6% males, 79.5% females). Parasites were especially prevalent in suckling goats (85.2%) and sheep (88.5%) and to a lesser extent in young (goats 80.6%, sheep 79.3%) and adult animals (goats 72.8%, sheep 73.8%). Haemonchus contortus, Trichuris ovis and Paramphistomum cervi were the most prevalent helminths. In a third step the in vitro anthelmintic activity of C. decidua, S. foetida, S. fruticosa, H. salicornicum and H. recurvum (Chapter 2) was investigated against adult worms of H. contortus, T. ovis and P. cervi (Chapter 3) via adult motility assay (Chapter 4). Various concentrations ranging from 7.8 to 500 mg dry matter/ml of three types of extracts of each plant, i.e. aqueous, methanol, and aqueous-methanol (30:70), were used at different time intervals to access their anthelmintic activity. Levamisol (0.55 mg/ml) and oxyclozanide (30 mg/ml) served as positive and phosphate-buffered saline as negative control. All extracts exhibited minimum and maximum activity at 2 h and 12 h after parasite exposure; the 500 mg/ml extract concentrations were most effective. Plant species (P<0.05), extract type (P<0.01), parasite species (P<0.01), extract concentration (P<0.01), time of exposure (P<0.01) and their interactions (P<0.01) had significant effects on the number of immobile/dead helminths. From the comparison of LC50 values it appeared that the aqueous extract of C. decidua was more potent against H. contortus and T. ovis, while the aqueous extract of S. foetida was effective against P. cervi. The methanol extracts of H. recurvum were most potent against all three types of parasites, and its aqueous-methanol extract was also very effective against T. ovis and P. cervi. Based on these result it is concluded that the aqueous extract of C. decidua, as well as the methanol and aqueous-methanol extract of H. recurvum have the potential to be developed into plant-based drugs for treatment against H. contortus, T. ovis and P. cervi infestations. Further studies are now needed to investigate the in vivo anthelmintic activity of these plants and plant extracts, respectively, in order to develop effective, cheap and locally available anthelmintics for pastoralists in Cholistan and neighboring desert regions. This will allow developing tangible recommendations for plant-based anthelminthic treatment of sheep and goat herds, and by this enable pastoralists to maintain healthy and productive flocks at low costs and probably even manufacture herbal drugs for marketing on a regional scale.
Resumo:
The ongoing depletion of the coastal aquifer in the Gaza strip due to groundwater overexploitation has led to the process of seawater intrusion, which is continually becoming a serious problem in Gaza, as the seawater has further invaded into many sections along the coastal shoreline. As a first step to get a hold on the problem, the artificial neural network (ANN)-model has been applied as a new approach and an attractive tool to study and predict groundwater levels without applying physically based hydrologic parameters, and also for the purpose to improve the understanding of complex groundwater systems and which is able to show the effects of hydrologic, meteorological and anthropogenic impacts on the groundwater conditions. Prediction of the future behaviour of the seawater intrusion process in the Gaza aquifer is thus of crucial importance to safeguard the already scarce groundwater resources in the region. In this study the coupled three-dimensional groundwater flow and density-dependent solute transport model SEAWAT, as implemented in Visual MODFLOW, is applied to the Gaza coastal aquifer system to simulate the location and the dynamics of the saltwater–freshwater interface in the aquifer in the time period 2000-2010. A very good agreement between simulated and observed TDS salinities with a correlation coefficient of 0.902 and 0.883 for both steady-state and transient calibration is obtained. After successful calibration of the solute transport model, simulation of future management scenarios for the Gaza aquifer have been carried out, in order to get a more comprehensive view of the effects of the artificial recharge planned in the Gaza strip for some time on forestall, or even to remedy, the presently existing adverse aquifer conditions, namely, low groundwater heads and high salinity by the end of the target simulation period, year 2040. To that avail, numerous management scenarios schemes are examined to maintain the ground water system and to control the salinity distributions within the target period 2011-2040. In the first, pessimistic scenario, it is assumed that pumping from the aquifer continues to increase in the near future to meet the rising water demand, and that there is not further recharge to the aquifer than what is provided by natural precipitation. The second, optimistic scenario assumes that treated surficial wastewater can be used as a source of additional artificial recharge to the aquifer which, in principle, should not only lead to an increased sustainable yield of the latter, but could, in the best of all cases, revert even some of the adverse present-day conditions in the aquifer, i.e., seawater intrusion. This scenario has been done with three different cases which differ by the locations and the extensions of the injection-fields for the treated wastewater. The results obtained with the first (do-nothing) scenario indicate that there will be ongoing negative impacts on the aquifer, such as a higher propensity for strong seawater intrusion into the Gaza aquifer. This scenario illustrates that, compared with 2010 situation of the baseline model, at the end of simulation period, year 2040, the amount of saltwater intrusion into the coastal aquifer will be increased by about 35 %, whereas the salinity will be increased by 34 %. In contrast, all three cases of the second (artificial recharge) scenario group can partly revert the present seawater intrusion. From the water budget point of view, compared with the first (do nothing) scenario, for year 2040, the water added to the aquifer by artificial recharge will reduces the amount of water entering the aquifer by seawater intrusion by 81, 77and 72 %, for the three recharge cases, respectively. Meanwhile, the salinity in the Gaza aquifer will be decreased by 15, 32 and 26% for the three cases, respectively.