5 resultados para Parameter Estimation, Fokker-planck Equation, Finite Elements

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motiviert durch die Lebenswissenschaften (Life sciences) haben sich Untersuchungen zur Dynamik von Makromolekülen in Lösungen in den vergangenen Jahren zu einem zukunftsweisenden Forschungsgebiet etabliert, dessen Anwendungen von der Biophysik über die physikalische Chemie bis hin zu den Materialwissenschaften reichen. Neben zahlreichen experimentellen Forschungsprogrammen zur räumlichen Struktur und den Transporteigenschaften grosser MolekÄule, wie sie heute praktisch an allen (Synchrotron-) Strahlungsquellen und den Laboren der Biophysik anzutreffen sind, werden gegenwärtig daher auch umfangreiche theoretische Anstrengungen unternommen, um das Diffusionsverhalten von Makromolekülen besser zu erklären. Um neue Wege für eine quantitative Vorhersagen des Translations- und Rotationsverhaltens grosser Moleküle zu erkunden, wurde in dieser Arbeit ein semiphänomenologischer Ansatz verfolgt. Dieser Ansatz erlaubte es, ausgehend von der Hamiltonschen Mechanik des Gesamtsystems 'Molekül + Lösung', eine Mastergleichung für die Phasenraumdichte der Makromoleküle herzuleiten, die den Einfluss der Lösung mittels effektiver Reibungstensoren erfasst. Im Rahmen dieses Ansatzes gelingt es z.B. (i) sowohl den Einfluss der Wechselwirkung zwischen den makromolekularen Gruppen (den sogenannten molekularen beads) und den Lösungsteilchen zu analysieren als auch (ii) die Diffusionseigen schaften für veschiedene thermodynamische Umgebungen zu untersuchen. Ferner gelang es auf der Basis dieser Näherung, die Rotationsbewegung von grossen Molekülen zu beschreiben, die einseitig auf einer Oberfläche festgeheftet sind. Im Vergleich zu den aufwendigen molekulardynamischen (MD) Simulationen grosser Moleküle zeichnet sich die hier dargestellte Methode vor allem durch ihren hohen `Effizienzgewinn' aus, der für komplexe Systeme leicht mehr als fünf Grössenordnungen betragen kann. Dieser Gewinn an Rechenzeit erlaubt bspw. Anwendungen, wie sie mit MD Simulationen wohl auch zukünftig nicht oder nur sehr zögerlich aufgegriffen werden können. Denkbare Anwendungsgebiete dieser Näherung betreffen dabei nicht nur dichte Lösungen, in denen auch die Wechselwirkungen der molekularen beads zu benachbarten Makromolekülen eine Rolle spielt, sondern auch Untersuchungen zu ionischen Flüssigkeiten oder zur Topologie grosser Moleküle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wir betrachten zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängi- gen Gebieten, wobei die Bewegung des Gebietsrandes bekannt ist. Die zeitliche Entwicklung des Gebietes wird durch die ALE-Formulierung behandelt, die die Nachteile der klassischen Euler- und Lagrange-Betrachtungsweisen behebt. Die Position des Randes und seine Geschwindigkeit werden dabei so in das Gebietsinnere fortgesetzt, dass starke Gitterdeformationen verhindert werden. Als Zeitdiskretisierungen höherer Ordnung werden stetige Galerkin-Petrov-Verfahren (cGP) und unstetige Galerkin-Verfahren (dG) auf Probleme in zeitabhängigen Gebieten angewendet. Weiterhin werden das C 1 -stetige Galerkin-Petrov-Verfahren und das C 0 -stetige Galerkin- Verfahren vorgestellt. Deren Lösungen lassen sich auch in zeitabhängigen Gebieten durch ein einfaches einheitliches Postprocessing aus der Lösung des cGP-Problems bzw. dG-Problems erhalten. Für Problemstellungen in festen Gebieten und mit zeitlich konstanten Konvektions- und Reaktionstermen werden Stabilitätsresultate sowie optimale Fehlerabschätzungen für die nachbereiteten Lösungen der cGP-Verfahren und der dG-Verfahren angegeben. Für zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten präsentieren wir konservative und nicht-konservative Formulierungen, wobei eine besondere Aufmerksamkeit der Behandlung der Zeitableitung und der Gittergeschwindigkeit gilt. Stabilität und optimale Fehlerschätzungen für die in der Zeit semi-diskretisierten konservativen und nicht-konservativen Formulierungen werden vorgestellt. Abschließend wird das volldiskretisierte Problem betrachtet, wobei eine Finite-Elemente-Methode zur Ortsdiskretisierung der Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten im ALE-Rahmen einbezogen wurde. Darüber hinaus wird eine lokale Projektionsstabilisierung (LPS) eingesetzt, um der Konvektionsdominanz Rechnung zu tragen. Weiterhin wird numerisch untersucht, wie sich die Approximation der Gebietsgeschwindigkeit auf die Genauigkeit der Zeitdiskretisierungsverfahren auswirkt.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Der Vielelektronen Aspekt wird in einteilchenartigen Formulierungen berücksichtigt, entweder in Hartree-Fock Näherung oder unter dem Einschluß der Elektron-Elektron Korrelationen durch die Dichtefunktional Theorie. Da die Physik elektronischer Systeme (Atome, Moleküle, Cluster, Kondensierte Materie, Plasmen) relativistisch ist, habe ich von Anfang an die relativistische 4 Spinor Dirac Theorie eingesetzt, in jüngster Zeit aber, und das wird der hauptfortschritt in den relativistischen Beschreibung durch meine Promotionsarbeit werden, eine ebenfalls voll relativistische, auf dem sogenannten Minimax Prinzip beruhende 2-Spinor Theorie umgesetzt. Im folgenden ist eine kurze Beschreibung meiner Dissertation: Ein wesentlicher Effizienzgewinn in der relativistischen 4-Spinor Dirac Rechnungen konnte durch neuartige singuläre Koordinatentransformationen erreicht werden, so daß sich auch noch für das superschwere Th2 179+ hächste Lösungsgenauigkeiten mit moderatem Computer Aufwand ergaben, und zu zwei weiteren interessanten Veröffentlichungen führten (Publikationsliste). Trotz der damit bereits ermöglichten sehr viel effizienteren relativistischen Berechnung von Molekülen und Clustern blieben diese Rechnungen Größenordnungen aufwendiger als entsprechende nicht-relativistische. Diese behandeln das tatsächliche (relativitische) Verhalten elektronischer Systeme nur näherungsweise richtig, um so besser jedoch, je leichter die beteiligten Atome sind (kleine Kernladungszahl Z). Deshalb habe ich nach einem neuen Formalismus gesucht, der dem möglichst gut Rechnung trägt und trotzdem die Physik richtig relativistisch beschreibt. Dies gelingt durch ein 2-Spinor basierendes Minimax Prinzip: Systeme mit leichten Atomen sind voll relativistisch nunmehr nahezu ähnlich effizient beschrieben wie nicht-relativistisch, was natürlich große Hoffnungen für genaue (d.h. relativistische) Berechnungen weckt. Es ergab sich eine erste grundlegende Veröffentlichung (Publikationsliste). Die Genauigkeit in stark relativistischen Systemen wie Th2 179+ ist ähnlich oder leicht besser als in 4-Spinor Dirac-Formulierung. Die Vorteile der neuen Formulierung gehen aber entscheidend weiter: A. Die neue Minimax Formulierung der Dirac-Gl. ist frei von spuriosen Zuständen und hat keine positronischen Kontaminationen. B. Der Aufwand ist weit reduziert, da nur ein 1/3 der Matrix Elemente gegenüber 4-Spinor noch zu berechnen ist, und alle Matrixdimensionen Faktor 2 kleiner sind. C. Numerisch verhält sich die neue Formulierung ähnlilch gut wie die nichtrelativistische Schrödinger Gleichung (Obwohl es eine exakte Formulierung und keine Näherung der Dirac-Gl. ist), und hat damit bessere Konvergenzeigenschaften als 4-Spinor. Insbesondere die Fehlerwichtung (singulärer und glatter Anteil) ist in 2-Spinor anders, und diese zeigt die guten Extrapolationseigenschaften wie bei der nichtrelativistischen Schrödinger Gleichung. Die Ausweitung des Anwendungsbereichs von (relativistischen) 2-Spinor ist bereits in FEM Dirac-Fock-Slater, mit zwei Beispielen CO und N2, erfolgreich gemacht. Weitere Erweiterungen sind nahezu möglich. Siehe Minmax LCAO Nährung.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A fully numerical two-dimensional solution of the Schrödinger equation is presented for the linear polyatomic molecule H^2+_3 using the finite element method (FEM). The Coulomb singularities at the nuclei are rectified by using both a condensed element distribution around the singularities and special elements. The accuracy of the results for the 1\sigma and 2\sigma orbitals is of the order of 10^-7 au.