8 resultados para PRODETUR. Evaluation. Development
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In this work, fabrication processes for daylight guiding systems based on micromirror arrays are developed, evaluated and optimized.Two different approaches are used: At first, nanoimprint lithography is used to fabricate large area micromirrors by means of Substrate Conformal Imprint Lithography (SCIL).Secondly,a new lithography technique is developed using a novel bi-layered photomask to fabricate large area micromirror arrays. The experimental results showing a reproducible stable process, high yield, and is consuming less material, time, cost and effort.
Resumo:
The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).
Resumo:
Krishin Vigyan Kendras-KVKs (Farm Science Centres) have been established by the Indian Council of Agricultural Research in 569 districts. The trust areas of KVKs are refinement and demonstration of technologies, and training of farmers and extension functionaries. Imparting vocational trainings in agriculture and allied fields for the rural youth is one of its mandates. The study was undertaken to do a formative and summative (outcome and impact) evaluation of the beekeeping and mushroom growing vocational training programmes in the Indian state of Punjab. One-group pre and post evaluation design was employed for conducting a formative and outcome evaluation. The knowledge tests were administered to 35 beekeeping and 25 mushroom cultivation trainees, before and after the training programmes organized in 2004. The trainees significantly gained in knowledge. A separate sample of 640 trainees, trained prior to 2004, was selected for finding the adoption status. Out of 640, a sample of 200 was selected by proportionate sampling technique out of three categories, namely: non-adopters, discontinued-adopters and continued-adopters for evaluating the long-term impact of these training programmes. Ex-post-facto one-shot case study design was applied for this impact analysis. The vocational training programmes have resulted in continued-adoption of beekeeping and mushroom cultivation enterprises by 20% and 51% trained farmers, respectively. Age and trainee occupation had significant influence on the adoption decision of beekeeping vocation, whereas education and family income significantly affected the adoption decision of mushroom cultivation. The continued adopters of beekeeping and mushroom growing had increased their family income by 49% and 24%, respectively. These training programmes are augmenting the dwindling farm income of the farmers in Indian Punjab.
Resumo:
This study evaluates the effects of environmental variables on traditional and alternative agroecosystems in three Ejidos (communal lands) in the Chiapas rainforest in Mexico. The tests occurred within two seasonal agricultural cycles. In spring-summer, experiments were performed with the traditional slash, fell and burn (S-F-B) system, no-burn systems and rotating systems with Mucuna deeringiana Bort., and in the autumn-winter agricultural cycle, three no-burn systems were compared to evaluate the effect of alternative sowing with corn (no-burn and topological modification of sowing). The results show a high floristic diversity in the study area (S_S = 4 - 23%), with no significant differences among the systems evaluated. In the first cycle, the analysis of the agronomical variables of the corn indicated better properties in the fallowing systems, with an average yield of 1950 kg ha^‑1, but there was variation related to the number of years left fallow. In the second cycle, the yields were positive for the alternative technology (average yield 3100 kg ha^‑1). The traditional S-F-B systems had reduced pests and increased organic matter and soil phosphorous content. These results are the consequence of fallow periods and adaptation to the environment; thus, this practice in the Chiapas rainforest constitutes an ethnocultural reality, which is unlikely to change in the near future if the agrosystems are managed based on historical principles.
Resumo:
In comparison with mixed forest stands, the cultivation of pure plantations in Vietnam entails serious ecological consequences such as loss of biodiversity and higher rate of soil erosion. The economic evaluation is elaborated between pure plantations and mixed forests where the fast-growing tree species are mixed with slow growing tree species which are planted in stripes separating the segments with fast-growing tree species (Acacia sp.). For the evaluation, the input values were used from local costs of goods, services and labour. The results show that the internal rate of return is the highest in the case of pure plantation in comparison with mixed forests – 86% to 77%(first planting pattern: Acacia sp. + noble hardwood species) and 54% (second planting pattern: Acacia + Dipterocarpus sp. + Sindora sp.). The average profit per hectare and year is almost five times higher in the case of mixed stands. The first planting pattern reaches 2,650 $, the second planting pattern 2,280 $ and the pure acacia plantation only 460 $. From an economic point of view, the cultivation of mixed forests that corresponds to the principles of sustainable forestry generates a good economical profit while maintaining habitat complexity and biodiversity.
Resumo:
Evaluation of major feed resources was conducted in four crop-livestock mixed farming systems of central southern Ethiopia, with 90 farmers, selected using multi-stage purposive and random sampling methods. Discussions were held with focused groups and key informants for vernacular name identification of feed, followed by feed sampling to analyse chemical composition (CP, ADF and NDF), in-vitro dry matter digestibility (IVDMD), and correlate with indigenous technical knowledge (ITK). Native pastures, crop residues (CR) and multi-purpose trees (MPT) are the major feed resources, demonstrated great variations in seasonality, chemical composition and IVDMD. The average CP, NDF and IVDMD values for grasses were 83.8 (ranged: 62.9–190), 619 (ranged: 357–877) and 572 (ranged: 317–743) g kg^(−1) DM, respectively. Likewise, the average CP, NDF and IVDMD for CR were 58 (ranged: 20–90), 760 (ranged: 340–931) and 461 (ranged: 285–637)g kg^(−1) DM, respectively. Generally, the MPT and non-conventional feeds (NCF, Ensete ventricosum and Ipomoea batatas) possessed higher CP (ranged: 155–164 g kg^(−1) DM) and IVDMD values (611–657 g kg^(−1) DM) while lower NDF (331–387 g kg^(−1) DM) and ADF (321–344 g kg^(−1) DM) values. The MPT and NCF were ranked as the best nutritious feeds by ITK while crop residues were the least. This study indicates that there are remarkable variations within and among forage resources in terms of chemical composition. There were also complementarities between ITK and feed laboratory results, and thus the ITK need to be taken into consideration in evaluation of local feed resources.
Resumo:
Various research fields, like organic agricultural research, are dedicated to solving real-world problems and contributing to sustainable development. Therefore, systems research and the application of interdisciplinary and transdisciplinary approaches are increasingly endorsed. However, research performance depends not only on self-conception, but also on framework conditions of the scientific system, which are not always of benefit to such research fields. Recently, science and its framework conditions have been under increasing scrutiny as regards their ability to serve societal benefit. This provides opportunities for (organic) agricultural research to engage in the development of a research system that will serve its needs. This article focuses on possible strategies for facilitating a balanced research evaluation that recognises scientific quality as well as societal relevance and applicability. These strategies are (a) to strengthen the general support for evaluation beyond scientific impact, and (b) to provide accessible data for such evaluations. Synergies of interest are found between open access movements and research communities focusing on global challenges and sustainability. As both are committed to increasing the societal benefit of science, they may support evaluation criteria such as knowledge production and dissemination tailored to societal needs, and the use of open access. Additional synergies exist between all those who scrutinise current research evaluation systems for their ability to serve scientific quality, which is also a precondition for societal benefit. Here, digital communication technologies provide opportunities to increase effectiveness, transparency, fairness and plurality in the dissemination of scientific results, quality assurance and reputation. Furthermore, funders may support transdisciplinary approaches and open access and improve data availability for evaluation beyond scientific impact. If they begin to use current research information systems that include societal impact data while reducing the requirements for narrative reports, documentation burdens on researchers may be relieved, with the funders themselves acting as data providers for researchers, institutions and tailored dissemination beyond academia.
Resumo:
In den letzten Jahrzehnten haben sich makroskalige hydrologische Modelle als wichtige Werkzeuge etabliert um den Zustand der globalen erneuerbaren Süßwasserressourcen flächendeckend bewerten können. Sie werden heutzutage eingesetzt um eine große Bandbreite wissenschaftlicher Fragestellungen zu beantworten, insbesondere hinsichtlich der Auswirkungen anthropogener Einflüsse auf das natürliche Abflussregime oder der Auswirkungen des globalen Wandels und Klimawandels auf die Ressource Wasser. Diese Auswirkungen lassen sich durch verschiedenste wasserbezogene Kenngrößen abschätzen, wie z.B. erneuerbare (Grund-)Wasserressourcen, Hochwasserrisiko, Dürren, Wasserstress und Wasserknappheit. Die Weiterentwicklung makroskaliger hydrologischer Modelle wurde insbesondere durch stetig steigende Rechenkapazitäten begünstigt, aber auch durch die zunehmende Verfügbarkeit von Fernerkundungsdaten und abgeleiteten Datenprodukten, die genutzt werden können, um die Modelle anzutreiben und zu verbessern. Wie alle makro- bis globalskaligen Modellierungsansätze unterliegen makroskalige hydrologische Simulationen erheblichen Unsicherheiten, die (i) auf räumliche Eingabedatensätze, wie z.B. meteorologische Größen oder Landoberflächenparameter, und (ii) im Besonderen auf die (oftmals) vereinfachte Abbildung physikalischer Prozesse im Modell zurückzuführen sind. Angesichts dieser Unsicherheiten ist es unabdingbar, die tatsächliche Anwendbarkeit und Prognosefähigkeit der Modelle unter diversen klimatischen und physiographischen Bedingungen zu überprüfen. Bisher wurden die meisten Evaluierungsstudien jedoch lediglich in wenigen, großen Flusseinzugsgebieten durchgeführt oder fokussierten auf kontinentalen Wasserflüssen. Dies steht im Kontrast zu vielen Anwendungsstudien, deren Analysen und Aussagen auf simulierten Zustandsgrößen und Flüssen in deutlich feinerer räumlicher Auflösung (Gridzelle) basieren. Den Kern der Dissertation bildet eine umfangreiche Evaluierung der generellen Anwendbarkeit des globalen hydrologischen Modells WaterGAP3 für die Simulation von monatlichen Abflussregimen und Niedrig- und Hochwasserabflüssen auf Basis von mehr als 2400 Durchflussmessreihen für den Zeitraum 1958-2010. Die betrachteten Flusseinzugsgebiete repräsentieren ein breites Spektrum klimatischer und physiographischer Bedingungen, die Einzugsgebietsgröße reicht von 3000 bis zu mehreren Millionen Quadratkilometern. Die Modellevaluierung hat dabei zwei Zielsetzungen: Erstens soll die erzielte Modellgüte als Bezugswert dienen gegen den jegliche weiteren Modellverbesserungen verglichen werden können. Zweitens soll eine Methode zur diagnostischen Modellevaluierung entwickelt und getestet werden, die eindeutige Ansatzpunkte zur Modellverbesserung aufzeigen soll, falls die Modellgüte unzureichend ist. Hierzu werden komplementäre Modellgütemaße mit neun Gebietsparametern verknüpft, welche die klimatischen und physiographischen Bedingungen sowie den Grad anthropogener Beeinflussung in den einzelnen Einzugsgebieten quantifizieren. WaterGAP3 erzielt eine mittlere bis hohe Modellgüte für die Simulation von sowohl monatlichen Abflussregimen als auch Niedrig- und Hochwasserabflüssen, jedoch sind für alle betrachteten Modellgütemaße deutliche räumliche Muster erkennbar. Von den neun betrachteten Gebietseigenschaften weisen insbesondere der Ariditätsgrad und die mittlere Gebietsneigung einen starken Einfluss auf die Modellgüte auf. Das Modell tendiert zur Überschätzung des jährlichen Abflussvolumens mit steigender Aridität. Dieses Verhalten ist charakteristisch für makroskalige hydrologische Modelle und ist auf die unzureichende Abbildung von Prozessen der Abflussbildung und –konzentration in wasserlimitierten Gebieten zurückzuführen. In steilen Einzugsgebieten wird eine geringe Modellgüte hinsichtlich der Abbildung von monatlicher Abflussvariabilität und zeitlicher Dynamik festgestellt, die sich auch in der Güte der Niedrig- und Hochwassersimulation widerspiegelt. Diese Beobachtung weist auf notwendige Modellverbesserungen in Bezug auf (i) die Aufteilung des Gesamtabflusses in schnelle und verzögerte Abflusskomponente und (ii) die Berechnung der Fließgeschwindigkeit im Gerinne hin. Die im Rahmen der Dissertation entwickelte Methode zur diagnostischen Modellevaluierung durch Verknüpfung von komplementären Modellgütemaßen und Einzugsgebietseigenschaften wurde exemplarisch am Beispiel des WaterGAP3 Modells erprobt. Die Methode hat sich als effizientes Werkzeug erwiesen, um räumliche Muster in der Modellgüte zu erklären und Defizite in der Modellstruktur zu identifizieren. Die entwickelte Methode ist generell für jedes hydrologische Modell anwendbar. Sie ist jedoch insbesondere für makroskalige Modelle und multi-basin Studien relevant, da sie das Fehlen von feldspezifischen Kenntnissen und gezielten Messkampagnen, auf die üblicherweise in der Einzugsgebietsmodellierung zurückgegriffen wird, teilweise ausgleichen kann.