7 resultados para PHOTOVOLTAIC MATERIALS

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison between the charge transport properties in low molecular amorphous thin films of spiro-linked compound and their corresponding parent compound has been demonstrated. The field-effect transistor method is used for extracting physical parameters such as field-effect mobility of charge carriers, ON/OFF ratios, and stability. In addition, phototransistors have been fabricated and demonstrated for the first time by using organic materials. In this case, asymmetrically spiro-linked compounds are used as active materials. The active materials used in this study can be divided into three classes, namely Spiro-linked compounds (symmetrically spiro-linked compounds), the corresponding parent-compounds, and photosensitive spiro-linked compounds (asymmetrically spiro-linked com-pounds). Some of symmetrically spiro-linked compounds used in this study were 2,2',7,7'-Tetrakis-(di-phenylamino)-9,9'-spirobifluorene (Spiro-TAD),2,2',7,7'-Tetrakis-(N,N'-di-p-methylphenylamino)-9,9'-spirobifluorene (Spiro-TTB), 2,2',7,7'-Tetra-(m-tolyl-phenylamino)-9,9'-spirobifluorene (Spiro-TPD), and 2,2Ž,7,7Ž-Tetra-(N-phenyl-1-naphtylamine)-9,9Ž-spirobifluorene (Spiro alpha-NPB). Related parent compounds of the symmetrically spiro-linked compound used in this study were N,N,N',N'-Tetraphenylbenzidine (TAD), N,N,N',N'-Tetrakis(4-methylphenyl)benzidine (TTB), N,N'-Bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), and N,N'-Diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (alpha-NPB). The photosensitive asymmetrically spiro-linked compounds used in this study were 2,7-bis-(N,N'-diphenylamino)-2',7'-bis(biphenyl-4-yl)-9,9'-spirobifluorene (Spiro-DPSP), and 2,7-bis-(N,N'-diphenylamino)-2',7'-bis(spirobifluorene-2-yl)-9,9'-spirobifluorene (Spiro-DPSP^2). It was found that the field-effect mobilities of charge carriers in thin films of symmetrically spiro-linked compounds and their corresponding parent compounds are in the same order of magnitude (~10^-5 cm^2/Vs). However, the thin films of the parent compounds were easily crystallized after the samples have been exposed in ambient atmosphere and at room temperature for three days. In contrast, the thin films and the transistor characteristics of symmetrically spiro-linked compound did not change significantly after the samples have been stored in ambient atmosphere and at room temperature for several months. Furthermore, temperature dependence of the mobility was analyzed in two models, namely the Arrhenius model and the Gaussian Disorder model. The Arrhenius model tends to give a high value of the prefactor mobility. However, it is difficult to distinguish whether the temperature behaviors of the material under consideration follows the Arrhenius model or the Gaussian Disorder model due to the narrow accessible range of the temperatures. For the first time, phototransistors have been fabricated and demonstrated by using organic materials. In this case, asymmetrically spiro-linked compounds are used as active materials. Intramolecular charge transfer between a bis(diphenylamino)biphenyl unit and a sexiphenyl unit leads to an increase in charge carrier density, providing the amplification effect. The operational responsivity of better than 1 A/W can be obtained for ultraviolet light at 370 nm, making the device interesting for sensor applications. This result offers a new potential application of organic thin film phototransistors as low-light level and low-cost visible blind ultraviolet photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In rural areas of the Mekong Countries, the problem of electricity supplying rural communities is particularly alarming. Supplying power to these areas requires facilities that are not economically viable. However, government programs are under way to provide this product that is vital to community well being. A nation priority of Mekong Countries is to provide electrical power to people in rural areas, within normal budgetary constraints. Electricity must be introduced into rural areas in such a way that maximize the technical, economic and social benefit. Another consideration is the source of electrical generation and the effects on the natural environment. The main research purpose is to implement field tests, monitoring and evaluation of the PV-Diesel Hybrid System (PVHS) at the Energy Park of School of Renewable Energy Technology (SERT) in order to test the PVSH working under the meteorological conditions of the Mekong Countries and to develop a software simulation called RES, which studies the technical and economic performance of rural electrification options. This software must be easy to use and understand for the energy planner on rural electrification projects, to evaluate the technical and economic performance of the PVHS based on the renewable energy potential for rural electrification of the Mekong Country by using RES. Finally, this project aims to give guidance for the possible use of PVHS application in this region, particularly in regard to its technical and economic sustainability. PVHS should be promoted according to the principles of proper design and adequate follow up with maintenance, so that the number of satisfied users will be achieved. PVHS is not the only possible technology for rural electrification, but for the Mekong Countries it is one of the most proper choices. Other renewable energy options such as wind, biomass and hydro power need to be studied in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scope of this work is the fundamental growth, tailoring and characterization of self-organized indium arsenide quantum dots (QDs) and their exploitation as active region for diode lasers emitting in the 1.55 µm range. This wavelength regime is especially interesting for long-haul telecommunications as optical fibers made from silica glass have the lowest optical absorption. Molecular Beam Epitaxy is utilized as fabrication technique for the quantum dots and laser structures. The results presented in this thesis depict the first experimental work for which this reactor was used at the University of Kassel. Most research in the field of self-organized quantum dots has been conducted in the InAs/GaAs material system. It can be seen as the model system of self-organized quantum dots, but is not suitable for the targeted emission wavelength. Light emission from this system at 1.55 µm is hard to accomplish. To stay as close as possible to existing processing technology, the In(AlGa)As/InP (100) material system is deployed. Depending on the epitaxial growth technique and growth parameters this system has the drawback of producing a wide range of nano species besides quantum dots. Best known are the elongated quantum dashes (QDash). Such structures are preferentially formed, if InAs is deposited on InP. This is related to the low lattice-mismatch of 3.2 %, which is less than half of the value in the InAs/GaAs system. The task of creating round-shaped and uniform QDs is rendered more complex considering exchange effects of arsenic and phosphorus as well as anisotropic effects on the surface that do not need to be dealt with in the InAs/GaAs case. While QDash structures haven been studied fundamentally as well as in laser structures, they do not represent the theoretical ideal case of a zero-dimensional material. Creating round-shaped quantum dots on the InP(100) substrate remains a challenging task. Details of the self-organization process are still unknown and the formation of the QDs is not fully understood yet. In the course of the experimental work a novel growth concept was discovered and analyzed that eases the fabrication of QDs. It is based on different crystal growth and ad-atom diffusion processes under supply of different modifications of the arsenic atmosphere in the MBE reactor. The reactor is equipped with special valved cracking effusion cells for arsenic and phosphorus. It represents an all-solid source configuration that does not rely on toxic gas supply. The cracking effusion cell are able to create different species of arsenic and phosphorus. This constitutes the basis of the growth concept. With this method round-shaped QD ensembles with superior optical properties and record-low photoluminescence linewidth were achieved. By systematically varying the growth parameters and working out a detailed analysis of the experimental data a range of parameter values, for which the formation of QDs is favored, was found. A qualitative explanation of the formation characteristics based on the surface migration of In ad-atoms is developed. Such tailored QDs are finally implemented as active region in a self-designed diode laser structure. A basic characterization of the static and temperature-dependent properties was carried out. The QD lasers exceed a reference quantum well laser in terms of inversion conditions and temperature-dependent characteristics. Pulsed output powers of several hundred milli watt were measured at room temperature. In particular, the lasers feature a high modal gain that even allowed cw-emission at room temperature of a processed ridge wave guide device as short as 340 µm with output powers of 17 mW. Modulation experiments performed at the Israel Institute of Technology (Technion) showed a complex behavior of the QDs in the laser cavity. Despite the fact that the laser structure is not fully optimized for a high-speed device, data transmission capabilities of 15 Gb/s combined with low noise were achieved. To the best of the author`s knowledge, this renders the lasers the fastest QD devices operating at 1.55 µm. The thesis starts with an introductory chapter that pronounces the advantages of optical fiber communication in general. Chapter 2 will introduce the fundamental knowledge that is necessary to understand the importance of the active region`s dimensions for the performance of a diode laser. The novel growth concept and its experimental analysis are presented in chapter 3. Chapter 4 finally contains the work on diode lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, optical gain measurement setup based on variable stripe length method is designed, implemented and improved. The setup is characterized using inorganic and organic samples. The optical gain of spiro-quaterphenyl is calculated and compared with measurements from the setup. Films with various thicknesses of spiro-quaterphenyl, methoxy-spiro-quaterphenyl and phenoxy-spiro-quaterphenyl are deposited by a vacuum vapor deposition technique forming asymmetric slab waveguides. The optical properties, laser emission threshold, optical gain and loss coefficient for these films are measured. Additionally, the photodegradation during pumping process is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ein Drittel des weltweiten gesamten Energiebedarfs wird durch Gebäude verbraucht. Um diesen Energiebedarf teilweise zu decken, den erheblichen Energieverbrauch zu reduzieren und weiterhin andere Gebäudefunktionen beizubehalten, ist Gebäudeintegrierte Photovoltaik (BIPV) eine der am besten geeigneten Lösungen für die Gebäudenanwendung. Im Bezug auf eine Vielzahl von Gestalltungsmöglichkeiten, sind die Randbedingungen der BIPV-Anwendungen eindeutig anders im Vergleich zu Standard-PV-Anwendungen, insbesondere bezüglich der Betriebstemperatur. Bisher gab es nicht viele Informationen zu den relevanten thermischen Auswirkungen auf die entsprechenden elektrischen Eigenschaften zusammen mit thermischen und mechanischen relevanten Gebäudenfunktionen. Die meisten Hersteller übernehmen diese Eigenschaften von entsprechenden PV-Modulen und konventionellen Bauprodukten Normen, die zur ungenauen System- und Gebäudeplanungen führen. Deshalb ist die Untersuchung des thermischen Einflusses auf elektrische, thermische sowie mechanische Eigenschaften das Hauptziel der vorliegenden Arbeit. Zunächst wird das Temperatur-Model mit dem Power-Balance-Konzept erstellt. Unter Berücksichtigung der variablen Installationsmöglichkeiten und Konfigurationen des Moduls wird das Model auf Basis dynamischer und stationär Eigenschaften entwickelt. Im Hinblick auf die dynamische Simulation können der Energieertrag und Leistung zusammen mit der thermischen Gebäudesimulation in Echtzeit simuliert werden. Für stationäre Simulationen können die relevanten Gebäudefunktionen von BIPV-Modulen sowohl im Sommer als auch im Winter simuliert werden. Basierend auf unterschiedlichen thermischen und mechanischen Last-Szenarien wurde darüber hinaus das mechanische Model zusammen mit Variationen von Belastungsdauer, Montagesystem und Verkapselungsmaterialien entwickelt. Um die Temperatur- und Mechanik-Modelle zu validieren, wurden die verschiedenen Prüfeinrichtungen zusammen mit neuen Testmethoden entwickelt. Bei Verwendung der Prüfanlage „PV variable mounting system“ und „mechanical testing equipment“ werden zudem die verschiedenen Szenarien von Montagesystemen, Modul-Konfigurationen und mechanischen Belastungen emuliert. Mit der neuen Testmethode „back-bias current concept“ können zum einen die solare Einstrahlung und bestimmte Betriebstemperaturen eingestellt werden. Darüber hinaus wurden mit den eingangs erwähnten validierten Modellen das jeweilige elektrische, thermische und mechanische Verhalten auf andere Konfigurationen bewertet. Zum Abschluss wird die Anwendung von Software-Tools bei PV-Herstellern im Hinblick auf die entsprechenden Modellentwicklungen thematisiert.