11 resultados para Optisches Messverfahren
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Mikrooptische Filter sind heutzutage in vielen Bereichen in der Telekommunikation unersetzlich. Wichtige Einsatzgebiete sind aber auch spektroskopische Systeme in der Medizin-, Prozess- und Umwelttechnik. Diese Arbeit befasst sich mit der Technologieentwicklung und Herstellung von luftspaltbasierenden, vertikal auf einem Substrat angeordneten, oberflächenmikromechanisch hergestellten Fabry-Perot-Filtern. Es werden zwei verschiedene Filtervarianten, basierend auf zwei verschiedenen Materialsystemen, ausführlich untersucht. Zum einen handelt es sich dabei um die Weiterentwicklung von kontinuierlich mikromechanisch durchstimmbaren InP / Luftspaltfiltern; zum anderen werden neuartige, kostengünstige Siliziumnitrid / Luftspaltfilter wissenschaftlich behandelt. Der Inhalt der Arbeit ist so gegliedert, dass nach einer Einleitung mit Vergleichen zu Arbeiten und Ergebnissen anderer Forschergruppen weltweit, zunächst einige theoretische Grundlagen zur Berechnung der spektralen Reflektivität und Transmission von beliebigen optischen Schichtanordnungen aufgezeigt werden. Auß erdem wird ein kurzer theoretischer Ü berblick zu wichtigen Eigenschaften von Fabry-Perot-Filtern sowie der Möglichkeit einer mikromechanischen Durchstimmbarkeit gegeben. Daran anschließ end folgt ein Kapitel, welches sich den grundlegenden technologischen Aspekten der Herstellung von luftspaltbasierenden Filtern widmet. Es wird ein Zusammenhang zu wichtigen Referenzarbeiten hergestellt, auf denen diverse Weiterentwicklungen dieser Arbeit basieren. Die beiden folgenden Kapitel erläutern dann ausführlich das Design, die Herstellung und die Charakterisierung der beiden oben erwähnten Filtervarianten. Abgesehen von der vorangehenden Epitaxie von InP / GaInAs Schichten, ist die Herstellung der InP / Luftspaltfilter komplett im Institut durchgeführt worden. Die Herstellungsschritte sind ausführlich in der Arbeit erläutert, wobei ein Schwerpunktthema das trockenchemische Ä tzen von InP sowie GaInAs, welches als Opferschichtmaterial für die Herstellung der Luftspalte genutzt wurde, behandelt. Im Verlauf der wissenschaftlichen Arbeit konnten sehr wichtige technische Verbesserungen entwickelt und eingesetzt werden, welche zu einer effizienteren technologischen Herstellung der Filter führten und in der vorliegenden Niederschrift ausführlich dokumentiert sind. Die hergestellten, für einen Einsatz in der optischen Telekommunikation entworfenen, elektrostatisch aktuierbaren Filter sind aus zwei luftspaltbasierenden Braggspiegeln aufgebaut, welche wiederum jeweils 3 InP-Schichten von (je nach Design) 357nm bzw. 367nm Dicke aufweisen. Die Filter bestehen aus im definierten Abstand parallel übereinander angeordneten Membranen, die über Verbindungsbrücken unterschiedlicher Anzahl und Länge an Haltepfosten befestigt sind. Da die mit 357nm bzw. 367nm vergleichsweise sehr dünnen Schichten freitragende Konstrukte mit bis zu 140 nm Länge bilden, aber trotzdem Positionsgenauigkeiten im nm-Bereich einhalten müssen, handelt es sich hierbei um sehr anspruchsvolle mikromechanische Bauelemente. Um den Einfluss der zahlreichen geometrischen Strukturparameter studieren zu können, wurden verschiedene laterale Filterdesigns implementiert. Mit den realisierten Filter konnte ein enorm weiter spektraler Abstimmbereich erzielt werden. Je nach lateralem Design wurden internationale Bestwerte für durchstimmbare Fabry-Perot-Filter von mehr als 140nm erreicht. Die Abstimmung konnte dabei kontinuierlich mit einer angelegten Spannung von nur wenigen Volt durchgeführt werden. Im Vergleich zu früher berichteten Ergebnissen konnten damit sowohl die Wellenlängenabstimmung als auch die dafür benötigte Abstimmungsspannung signifikant verbessert werden. Durch den hohen Brechungsindexkontrast und die geringe Schichtdicke zeigen die Filter ein vorteilhaftes, extrem weites Stopband in der Größ enordnung um 550nm. Die gewählten, sehr kurzen Kavitätslängen ermöglichen einen freien Spektralbereich des Filters welcher ebenfalls in diesen Größ enordnungen liegt, so dass ein weiter spektraler Einsatzbereich ermöglicht wird. Während der Arbeit zeigte sich, dass Verspannungen in den freitragenden InPSchichten die Funktionsweise der mikrooptischen Filter stark beeinflussen bzw. behindern. Insbesondere eine Unterätzung der Haltepfosten und die daraus resultierende Verbiegung der Ecken an denen sich die Verbindungsbrücken befinden, führte zu enormen vertikalen Membranverschiebungen, welche die Filtereigenschaften verändern. Um optimale Ergebnisse zu erreichen, muss eine weitere Verbesserung der Epitaxie erfolgen. Jedoch konnten durch den zusätzlichen Einsatz einer speziellen Schutzmaske die Unterätzung der Haltepfosten und damit starke vertikale Verformungen reduziert werden. Die aus der Verspannung resultierenden Verformungen und die Reaktion einzelner freistehender InP Schichten auf eine angelegte Gleich- oder Wechselspannung wurde detailliert untersucht. Mittels Weisslichtinterferometrie wurden lateral identische Strukturen verglichen, die aus unterschiedlich dicken InP-Schichten (357nm bzw. 1065nm) bestehen. Einen weiteren Hauptteil der Arbeit stellen Siliziumnitrid / Luftspaltfilter dar, welche auf einem neuen, im Rahmen dieser Dissertation entwickelten, technologischen Ansatz basieren. Die Filter bestehen aus zwei Braggspiegeln, die jeweils aus fünf 590nm dicken, freistehenden Siliziumnitridschichten aufgebaut sind und einem Abstand von 390nm untereinander aufweisen. Die Filter wurden auf Glassubstraten hergestellt. Der Herstellungsprozess ist jedoch auch mit vielen anderen Materialien oder Prozessen kompatibel, so dass z.B. eine Integration mit anderen Bauelemente relativ leicht möglich ist. Die Prozesse dieser ebenfalls oberflächenmikromechanisch hergestellten Filter wurden konsequent auf niedrige Herstellungskosten optimiert. Als Opferschichtmaterial wurde hier amorph abgeschiedenes Silizium verwendet. Der Herstellungsprozess beinhaltet die Abscheidung verspannungsoptimierter Schichten (Silizium und Siliziumnitrid) mittels PECVD, die laterale Strukturierung per reaktiven Ionenätzen mit den Gasen SF6 / CHF3 / Ar sowie Fotolack als Maske, die nasschemische Unterätzung der Opferschichten mittels KOH und das Kritisch-Punkt-Trocken der Proben. Die Ergebnisse der optischen Charakterisierung der Filter zeigen eine hohe Ü bereinstimmung zwischen den experimentell ermittelten Daten und den korrespondierenden theoretischen Modellrechnungen. Weisslichtinterferometermessungen der freigeätzten Strukturen zeigen ebene Filterschichten und bestätigen die hohe vertikale Positioniergenauigkeit, die mit diesem technologischen Ansatz erreicht werden kann.
Resumo:
Im Rahmen dieser Arbeit wurden magneto-optische Speicherschichten und ihre Kopplungen untereinander untersucht. Hierzu wurden zum Einen die für die magneto-optische Speichertechnologie "klassischen" Schichten aus RE/TM-Legierungen verwendet, zum Anderen aber auch erfolgreich Granate integriert, die bisher nicht in diesem Anwendungsgebiet verwendet wurden. Einleitend werden die magneto-optischen Verfahren, die resultierenden Anforderungen an die dünnen Schichten und die entsprechenden physikalischen Grundlagen diskutiert. Außerdem wird auf das Hochfrequenz-Sputtern von RE/TM-Legierungen eingegangen und die verwendeten magneto-optischen Messverfahren werden erläutert [Kap. 2 & 3]. Die Untersuchungen an RE/TM-Schichten bestätigen die aus der Literatur bekannten Eigenschaften. Sie lassen sich effektiv, und für magneto-optische Anwendungen geeignet, über RF-Sputtern herstellen. Die unmittelbaren Schicht-Parameter, wie Schichtdicke und Terbium-Konzentration, lassen sich über einfache Zusammenhänge einstellen. Da die Terbium-Konzentration eine Änderung der Kompensationstemperatur bewirkt, lässt sich diese mit Messungen am Kerr-Magnetometer überprüfen. Die für die Anwendung interessante senkrechte magnetische Anisotropie konnte ebenfalls mit den Herstellungsbedingungen verknüpft werden. Bei der Herstellung der Schichten auf einer glatten Glas-Oberfläche (Floatglas) zeigt die RE/TM-Schicht bereits in den ersten Lagen ein Wachstumsverhalten, das eine senkrechte Anisotropie bewirkt. Auf einer Quarzglas- oder Keramik-Oberfläche wachsen die ersten Lagen in einer durch das Substrat induzierten Struktur auf, danach ändert sich das Wachstumsverhalten stetig, bis eine senkrechte Anisotropie erreicht wird. Dieses Verhalten kann auch durch verschiedene Pufferschichten (Aluminium und Siliziumnitrid) nur unwesentlich beeinflusst werden [Kap. 5 & Kap. 6]. Bei der direkten Aufbringung von Doppelschichten, bestehend aus einer Auslese-Schicht (GdFeCo) auf einer Speicherschicht (TbFeCo), wurde die Austausch-Kopplung demonstriert. Die Ausleseschicht zeigt unterhalb der Kompensationstemperatur keine Kopplung an die Speicherschicht, während oberhalb der Kompensationstemperatur eine direkte Kopplung der Untergitter stattfindet. Daraus ergibt sich das für den MSR-Effekt erwünschte Maskierungsverhalten. Die vorher aus den Einzelschichten gewonnen Ergebnisse zu Kompensationstemperatur und Wachstumsverhalten konnten in den Doppelschichten wiedergefunden werden. Als Idealfall erweist sich hier die einfachste Struktur. Man bringt die Speicherschicht auf Floatglas auf und bedeckt diese direkt mit der Ausleseschicht [Kap. 7]. Weiterhin konnte gezeigt werden, dass es möglich ist, den Faraday-Effekt einer Granatschicht als verstärkendes Element zu nutzen. Im anwendungstauglichen, integrierten Schichtsystem konnten die kostengünstig, mit dem Sol-Gel-Verfahren produzierten, Granate die strukturellen Anforderungen nicht erfüllen, da sich während der Herstellung Risse und Löcher gebildet haben. Bei der experimentellen Realisierung mit einer einkristallinen Granatschicht und einer RE/TM-Schicht konnte die prinzipielle Eignung des Schichtsystems demonstriert werden [Kap. 8].
Resumo:
Diese Arbeit umfaßt das elektromechanische Design und die Designoptimierung von weit durchstimmbaren optischen multimembranbasierten Bauelementen, mit vertikal orientierten Kavitäten, basierend auf der Finiten Element Methode (FEM). Ein multimembran InP/Luft Fabry-Pérot optischer Filter wird dargestellt und umfassend analysiert. In dieser Arbeit wird ein systematisches strukturelles Designverfahren dargestellt. Genaue analytische elektromechanischer Modelle für die Bauelemente sind abgeleitet worden. Diese können unschätzbare Werkzeuge sein, um am Anfang der Designphase schnell einen klaren Einblick zur Verfügung zu stellen. Mittels des FEM Programms ist der durch die nicht-lineare Verspannung hervorgerufene versteifende Effekt nachgeforscht und sein Effekt auf die Verlängerung der mechanischen Durchstimmungsstrecke der Bauelemente demonstriert worden. Interessant war auch die Beobachtung, dass die normierte Relation zwischen Ablenkung und Spannung ein unveränderliches Profil hat. Die Deformation der Membranflächen der in dieser Arbeit dargestellten Bauelementformen erwies sich als ein unerwünschter, jedoch manchmal unvermeidbarer Effekt. Es zeigt sich aber, dass die Wahl der Größe der strukturellen Dimensionen den Grad der Membrandeformation im Falle der Aktuation beeinflusst. Diese Arbeit stellt ein elektromechanisches in FEMLAB implementierte quasi-3D Modell, das allgemein für die Modellierung dünner Strukturen angewendet werden kann, dar; und zwar indem man diese als 2D-Objekte betrachtet und die dritte Dimension als eine konstante Größe (z.B. die Schichtdicke) oder eine Größe, welche eine mathematische Funktion ist, annimmt. Diese Annahme verringert drastisch die Berechnungszeit sowie den erforderlichen Arbeitsspeicherbedarf. Weiter ist es für die Nachforschung des Effekts der Skalierung der durchstimmbaren Bauelemente verwendet worden. Eine neuartige Skalierungstechnik wurde abgeleitet und verwendet. Die Ergebnisse belegen, dass das daraus resultierende, skalierte Bauelement fast genau die gleiche mechanische Durchstimmung wie das unskalierte zeigt. Die Einbeziehung des Einflusses von axialen Verspannungen und Gradientenverspannungen in die Berechnungen erforderte die Änderung der Standardimplementierung des 3D Mechanikberechnungsmodus, der mit der benutzten FEM Software geliefert wurde. Die Ergebnisse dieser Studie zeigen einen großen Einfluss der Verspannung auf die Durchstimmungseigenschaften der untersuchten Bauelemente. Ferner stimmten die Ergebnisse der theoretischen Modellrechnung mit den experimentellen Resultaten sehr gut überein.
Resumo:
Die vorliegende Arbeit berichtet über ein neuartiges, kombiniertes Messverfahren zur gleichzeitigen Erfassung von Form und Material einer glänzenden Probenoberfläche. Die Materialerkennung erfolgt über die polarisationsoptische Brechzahlbestimmung im Messpunkt mit Mikroellipsometrie. Die Mikroellipsometrie ist ein fokussierendes Ellipsometer, das aus der Polarisationsänderung, bedingt durch die Wechselwirkung Licht – Materie, die materialcharakteristische komplexe Brechzahl eines reflektierenden Materials ermitteln kann. Bei der fokussierenden Ellipsometrie ist die Anordnung der fokussierenden Optiken von Bedeutung. Die hier vorgestellte ellipsometerexterne Fokussierung vermeidet Messfehler durch optische Anisotropien und ermöglicht die multispektrale ellipsometrische Messung. Für die ellipsometrische Brechzahlbestimmung ist zwingend die Kenntnis des Einfallswinkels des Messstrahls und die räumliche Orientierung der Oberflächenneigung zum Koordinatensystem des Ellipsometers notwendig. Die Oberflächenneigung wird mit einem Deflektometer ermittelt, das speziell für den Einsatz in Kombination mit der Ellipsometrie entwickelt wurde. Aus der lokalen Oberflächenneigung kann die Topographie einer Probe rekonstruiert werden. Der Einfallswinkel ist ebenfalls aus den Oberflächenneigungen ableitbar. Die Arbeit stellt die Systemtheorie der beiden kombinierten Messverfahren vor, außerdem werden Beiträge zu Messunsicherheiten diskutiert. Der experimentelle Teil der Arbeit beinhaltet die separate Untersuchung zur Leistungsfähigkeit der beiden zu kombinierenden Messverfahren. Die experimentellen Ergebnisse erlauben die Schlussfolgerung, dass ein Mikro-Deflexions-Ellipsometer erfolgreich realisierbar ist.
Resumo:
A real-time analysis of renewable energy sources, such as arable crops, is of great importance with regard to an optimised process management, since aspects of ecology and biodiversity are considered in crop production in order to provide a sustainable energy supply by biomass. This study was undertaken to explore the potential of spectroscopic measurement procedures for the prediction of potassium (K), chloride (Cl), and phosphate (P), of dry matter (DM) yield, metabolisable energy (ME), ash and crude fibre contents (ash, CF), crude lipid (EE), nitrate free extracts (NfE) as well as of crude protein (CP) and nitrogen (N), respectively in pretreated samples and undisturbed crops. Three experiments were conducted, one in a laboratory using near infrared reflectance spectroscopy (NIRS) and two field spectroscopic experiments. Laboratory NIRS measurements were conducted to evaluate to what extent a prediction of quality parameters is possible examining press cakes characterised by a wide heterogeneity of their parent material. 210 samples were analysed subsequent to a mechanical dehydration using a screw press. Press cakes serve as solid fuel for thermal conversion. Field spectroscopic measurements were carried out with regard to further technical development using different field grown crops. A one year lasting experiment over a binary mixture of grass and red clover examined the impact of different degrees of sky cover on prediction accuracies of distinct plant parameters. Furthermore, an artificial light source was used in order to evaluate to what extent such a light source is able to minimise cloud effects on prediction accuracies. A three years lasting experiment with maize was conducted in order to evaluate the potential of off-nadir measurements inside a canopy to predict different quality parameters in total biomass and DM yield using one sensor for a potential on-the-go application. This approach implements a measurement of the plants in 50 cm segments, since a sensor adjusted sideways is not able to record the entire plant height. Calibration results obtained by nadir top-of-canopy reflectance measurements were compared to calibration results obtained by off-nadir measurements. Results of all experiments approve the applicability of spectroscopic measurements for the prediction of distinct biophysical and biochemical parameters in the laboratory and under field conditions, respectively. The estimation of parameters could be conducted to a great extent with high accuracy. An enhanced basis of calibration for the laboratory study and the first field experiment (grass/clover-mixture) yields in improved robustness of calibration models and allows for an extended application of spectroscopic measurement techniques, even under varying conditions. Furthermore, off-nadir measurements inside a canopy yield in higher prediction accuracies, particularly for crops characterised by distinct height increment as observed for maize.
Resumo:
Die Reduktion von Schadstoff-Emissionen und des Kraftstoffverbrauches sind für die Einhaltung von immer strenger werdenden Abgasgrenzwerten zum Schutz der menschlichen Gesundheit und der Vegetation von großer gesellschaftlicher Bedeutung. Ob Deutschland die innerstädtischen Immissionsgrenzwerte der Europäischen Union (EU) für Stickstoffdioxid (NO2) ab 2010 einhalten wird, ist fraglich. Vor allem Lastkraftwagen mit Dieselmotor emittieren einen Großteil dieses Schadstoffes, sodass man mit einer Senkung der NO2-Emissionen dem gesetzten Ziel der Einhaltung der von der EU festgelegten NO2-Immisionsgrenzwerte bereits erheblich näher kommen würde. Ziel dieser Arbeit war es zu untersuchen, ob mit der Kenntnis der NO2-Konzentration im Abgas von Lastkraftwagen mit Dieselmotor mittels Spektroskopie eine Reduzierung der NO2-Emissionen und eine Senkung des Kraftstoffverbrauches erreicht werden kann. Hierzu muss sowohl die Bestimmung der NO2-Konzentration aus der spektralen Analyse des Abgases möglich sein, als auch die Herstellung eines mikromechanisch durchstimmbaren optischen Fabry-Pérot-Filters mit Bragg-Spiegeln, der die Voraussetzungen erfüllt, das für die spektrale Analyse benötigte Spektrum quantifizieren zu können. Zusätzlich soll mit Hilfe der aus den Spektren extrahierten Information eine in Echtzeit gemessene NO2-Konzentration im Abgas ableitbar sein. Damit sollen Kraftstoff eingespart und Schadstoff-Emissionen reduziert werden. Hierfür wird am Beispiel eines Lastkraftwagens mit typischer Abgasnachbehandlung aufgezeigt, wie über innermotorische Maßnahmen die Verbrennung optimierbar ist und wie die Eigenschaften der Abgasnachbehandlung verbesserbar sind, sodass die gewünschten Senkungen erreicht werden. Zusätzlich kann auf den Einbau eines Sperrkatalysators im Abgasstrang verzichtet werden. Ferner reduziert sich auch der Verbrauch des für die Abgasnachbehandlung benötigten Harnstoffs. Zur Klärung, ob die NO2-Konzentration aus der spektralen Analyse des Abgases bestimmt werden kann, wurden an einem Motorprüfstand Spektren für verschiedene NO2-Konzentrationen gemessen. Zusätzlich wurde das in dieser Arbeit behandelte Sensor-System mittels mathematischer Modellrechnung beschrieben, sodass dieses Modell anschließend auf die am Motorprüfstand gemessenen Spektren angewendet werden konnte. Die auf diese Weise berechneten Ergebnisse wurden mit den NO2-Messungen am Motorprüfstand verglichen und zeigen eine große Korrelation. In dem mathematischen Modell wird auch die spektrale Auflösung des Sensors berücksichtigt, die vom optischen Filter erreicht werden muss. Es wurde in dieser Arbeit untersucht, ob ein solches Filter realisiert werden kann. Hierzu wurde unter Anwendung der Transfer-Matrix-Methode (TMM) zur Berechnung optischer Eigenschaften von Dünnschichtsystemen eine Struktur entwickelt, die den optischen Anforderungen an das Filter genügt. Grundlage für dieses Design ist ein mikromechanisch durchstimmbares Fabry-Pérot-Filter mit Bragg-Spiegeln. Zur Herstellung dieses mikromechanisch durchstimmbaren, optischen Filters wurde eine Prozesskette entwickelt, mit der Filter mit einer Transmission von über 60 % hergestellt wurden. Die mit dieser Prozesskette hergestellten Strukturen wurden topografisch und optisch charakterisiert. Der Vergleich der gemessenen Ergebnisse mit theoretischen Modellrechnungen zeigt eine hohe Übereinstimmung, sodass mit der verwendeten Methodik gute Prognosen von Filtereigenschaften getroffen werden können. Es kann außerdem ein verbessertes Design präsentiert werden, welches eine um 10 % höhere Transmission und ein doppelt so großes Auflösungsvermögen gegenüber dem ursprünglichen Design aufweist. Verbesserungspotenziale in der Prozesskette können präsentiert werden, mit denen die optischen und mechanischen Eigenschaften zukünftiger Filter optimiert werden können. Es wird gezeigt, dass ein optisches Filter hergestellt werden kann, mit dem die NO2-Konzentration im Abgas von Lastkraftwagen mit Dieselmotoren spektroskopisch bestimmt werden kann, sodass der Kraftstoffverbrauch gesenkt und die Schadstoffemissionen reduziert werden können. In Abgasnormen sind einzuhaltende NOX-Grenzwerte festgelegt. Sollten in Zukunft auch NO2-Emissionsgrenzwerte in den Abgasnormen festgelegt werden, kann deren Einhaltung mit dem vorgestellten Sensor-Prinzip überwacht werden. Auf diese Weise wird die Chance auf Einhaltung der NO2-Immissionsgrenzwerte der EU maßgeblich erhöht.
Resumo:
Optische Spektrometer sind bekannte Instrumente für viele Anwendungen in Life Sciences, Produktion und Technik aufgrund ihrer guten Selektivität und Sensitivität zusammen mit ihren berührungslosen Messverfahren. MEMS (engl. Micro-electro-mechanical system)-basierten Spektrometer werden als disruptive Technologie betrachtet, in der miniaturisierte Fabry-Pérot Filter als sehr attraktiv für die optische Kommunikation und 'Smart Personal Environments', einschließlich des medizinischen Anwendungen, zu nennen sind. Das Ziel dieser Arbeit ist, durchstimmbare Filter-Arrays mit kostengünstigen Technologien herzustellen. Materialien und technologische Prozesse, die für die Herstellung der Filter-Arrays benötigt werden, wurden untersucht. Im Rahmen dieser Arbeit, wurden durchstimmbare Fabry Pérot Filter-Arrays für den sichtbaren Spektralbereich untersucht, die als Nano-Spektrometer eingesetzt werden. Darüber hinaus wurde ein Modell der numerischen Simulation vorgestellt, die zur Ermittlung eines optimales geometrisches Designs verwendet wurde, wobei sich das Hauptaugenmerk der Untersuchung auf die Durchbiegung der Filtermembranen aufgrund der mechanischen Verspannung der Schichten richtet. Die geometrische Form und Größe der Filtermembranen zusammen mit der Verbindungsbrücken sind von entscheidender Bedeutung, da sie die Durchbiegung beeinflussen. Lange und schmale Verbindungsbrücken führen zur stärkeren Durchbiegung der Filtermembranen. Dieser Effekt wurde auch bei der Vergrößerung der Durchmesser der Membran beobachtet. Die Filter mit spiralige (engl. curl-bent) Verbindungsbrücken führten zu geringerer Deformation als die mit geraden oder gebogenen Verbindungsbrücken. Durchstimmbare Si3N4/SiO2 DBR-basierende Filter-Arrays wurden erfolgreich hergestellt. Eine Untersuchung über die UV-NIL Polymere, die als Opferschicht und Haltepfosten-Material der Filter verwendet wurden, wurde durchgeführt. Die Polymere sind kompatibel zu dem PECVD-Verfahren, das für die Spiegel-Herstellung verwendet wird. Die laterale Strukturierung der DBR-Spiegel mittels des RIE (engl. Reactive Ion Etching)-Prozesses sowie der Unterätz-Prozess im Sauerstoffplasma zur Entfernung der Opferschicht und zum Erreichen der Luftspalt-Kavität, wurden durchgeführt. Durchstimmbare Filter-Arrays zeigten einen Abstimmbereich von 70 nm bei angelegten Spannungen von weniger als 20 V. Optimierungen bei der Strukturierung von TiO2/SiO2 DBR-basierenden Filtern konnte erzielt werden. Mit der CCP (engl. Capacitively Coupling Plasma)-RIE, wurde eine Ätzrate von 20 nm/min erreicht, wobei Fotolack als Ätzmaske diente. Mit der ICP (engl. Inductively Coupling Plasma)-RIE, wurden die Ätzrate von mehr als 60 nm/min mit einem Verhältniss der Ar/SF6 Gasflüssen von 10/10 sccm und Fotolack als Ätzmasken erzielt. Eine Ätzrate von 80 bis 90 nm/min wurde erreicht, hier diente ITO als Ätzmaske. Ausgezeichnete geätzte Profile wurden durch den Ätzprozess unter Verwendung von 500 W ICP/300 W RF-Leistung und Ar/SF6 Gasflüsse von 20/10 sccm erreicht. Die Ergebnisse dieser Arbeit ermöglichen die Realisierung eines breiten Spektralbereichs der Filter-Arrays im Nano-Spektrometer.
Resumo:
Das Ziel der vorliegenden Arbeit war die Herstellung und Charakterisierung mikromechanisch durchstimmbarer, dielektrischer Fabry-Pérot-Filter im nahen Infrarot-Bereich bei einer Zentralwellenlänge von λc = 950 nm. Diese Bauelemente wurden auf Basis kostengünstiger Technologien realisiert, dank deren Entwicklung extreme Miniaturisierung und gleichzeitig hohe spektrale Anforderungen möglich sind. Der Vorteil solcher Filter liegt darin, dass sie direkt in einen Photodetektor integriert werden können und mit ganz wenigen Komponenten zu einem kompakten Spektrometermodul zusammengesetzt werden können. Die Baugröße ist nur durch die Größe des Photodetektors limitiert und die gesamte Intensität des einfallenden Lichts kann vorteilhaft auf eine einzelne Filtermembran des Fabry-Pérot-Filters fokussiert werden. Für den Filteraufbau werden zwei hochreflektierende, dielektrische DBR-Spiegel, ein organisches Opferschichtmaterial, welches zur Erzeugung einer Luftkavität im Filter dient, und zwei unterschiedliche Elektroden aus ITO und Aluminium verwendet. Die mikromechanische Auslenkung der freigelegten Filtermembran geschieht mittels elektrostatischer Aktuation, wobei auf diese Weise die Kavitätshöhe des Fabry-Pérot-Filters geändert wird und somit dieser im erforderlichen Spektralbereich optisch durchgestimmt wird. Das in dieser Arbeit gewählte Filterkonzept stellt eine Weiterentwicklung eines bereits bestehenden Filterkonzepts für den sichtbaren Spektralbereich dar. Zum Einen wurden in dieser Arbeit das vertikale und das laterale Design der Filterstrukturen geändert. Eine entscheidende Änderung lag im mikromechanisch beweglichen Teil des Fabry-Pérot-Filters. Dieser schließt den oberen DBR-Spiegel und ein aus dielektrischen Schichten und der oberen Aluminium-Elektrode bestehendes Membranhaltesystem ein, welches später durch Entfernung der Opferschicht freigelegt wird. Die Fläche des DBR-Spiegels wurde auf die Fläche der Filtermembran reduziert und auf dem Membranhaltesystem positioniert. Zum Anderen wurde im Rahmen dieser Arbeit der vertikale Schichtaufbau des Membranhaltesystems variiert und der Einfluss der gewählten Materialien auf die Krümmung der freistehenden Filterstrukturen, auf das Aktuationsverhalten und auf die spektralen Eigenschaften des gesamten Filters untersucht. Der Einfluss der mechanischen Eigenschaften dieser Materialien spielt nämlich eine bedeutende Rolle bei der Erhaltung der erforderlichen optischen Eigenschaften des gesamten Filters. Bevor Fabry-Pérot-Filter ausgeführt wurden, wurde die mechanische Spannung in den einzelnen Materialien des Membranhaltesystems bestimmt. Für die Messung wurde Substratkrümmungsmethode angewendet. Es wurde gezeigt, dass die Plasmaanregungsfrequenzen der plasmaunterstützten chemischen Gasphasenabscheidung bei einer Prozesstemperatur von 120 °C die mechanische Spannung von Si3N4 enorm beeinflussen. Diese Ergebnisse wurden im Membranhaltesystem umgesetzt, wobei verschiedene Filter mit unterschiedlichen mechanischen Eigenschaften des Membranhaltesystems gezeigt wurden. Darüber hinaus wurden optische Eigenschaften der Filter unter dem Einfluss des lateralen Designs der Filterstrukturen untersucht. Bei den realisierten Filtern wurden ein optischer Durchstimmbereich von ca. 70 nm und eine spektrale Auflösung von 5 nm erreicht. Die erreichte Intensität der Transmissionslinie liegt bei 45-60%. Diese Parameter haben für den späteren spektroskopischen Einsatz der realisierten Fabry-Pérot-Filter eine hohe Bedeutung. Die Anwendung soll erstmalig in einem „Proof of Concept“ stattfinden, wobei damit die Oberflächentemperatur eines GaAs-Wafers über die Messung der spektralen Lage seiner Bandlücke bestimmt werden kann.
Resumo:
Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.
Resumo:
Die vorliegende Arbeit befasst sich mit dem lateralen Auflösungsvermögen in der kurzkohärenten Interferenzmikroskopie. Das 3D-Auflösungsvermögen von Phasenobjekten ist im Gegensatz zu dem von Intensitätsobjekten stark nichtlinear und vom spezifischen Messverfahren abhängig. In diesem Zusammenhang sind systematische Messfehler von entscheidender Bedeutung. Für die kurzkohärente Interferenzmikroskopie ist das Überschwingen an Kanten von besonderem Belang, da sich der Effekt bei der Messung vieler technischer Oberflächen negativ auswirkt. Er entsteht durch die Überlagerung von Interferenzsignalen lateral benachbarter Objektpunkte von unterschiedlichen Höhenniveaus. Es wird an speziell für diesen Zweck entwickelten Messsystemen untersucht in wie weit dieser Effekt physikalisch reduziert werden kann und wie sich dies auf die laterale Auflösung auswirkt. An einem für den Einsatz in einer Nanomessmaschine optimierten Linnik-Interferometer wird die Justage eines solchen Systems erläutert. Der Sensor verfügt über die Option mit NUV-Licht betrieben zu werden, um die laterale Auflösung zu verbessern. Aufgrund des Einsatzzweckes ist der Arbeitsabstand relativ groß, was die laterale Auflösung einschränkt. Mit einem zweiten auf die Untersuchungen in dieser Arbeit optimierten Versuchsaufbau können die physikalischen Grenzen der kurzkohärenten Interferenzmikroskopie praktisch untersucht werden. Zu diesem Zweck ist der Aufbau mit einem Mikrospiegelarray ausgestattet, um hierüber variable konfokale Blenden zu schaffen. Mit diesem System wird erstmalig konfokale Mikroskopie mit Weißlichtinterferometrie kombiniert. Durch die optische Selektion der konfokalen Mikroskopie soll die Ursache für die Überschwinger an Kanten reduziert werden. Eine weitere Möglichkeit der Einflussnahme stellt die optionale Beleuchtung mit polarisiertem Licht dar, wodurch die laterale Auflösung weiter gesteigert werden kann. Zusätzlich kann auch dieser Aufbau mit kurzwelligem blauem Licht betrieben werden, um die laterale Auflösung zu optimieren. Die Messergebnisse, die mit diesen Versuchsaufbauten gemacht wurden, zeigen, dass im Gegensatz zu den in der derzeitigen Normung genutzten Modellen das Übertragungsverhalten in der Weißlichtinterferometrie bei der Messung von Phasenobjekten stark nichtlinear ist. Das laterale Auflösungsvermögen deckt sich je nach Auswerteverfahren recht gut mit dem von klassischen Mikroskopen bei der Wiedergabe von Intensitätsobjekten. Für die Untersuchungen wurde überwiegend ein Auflösungsnormal mit neun unterschiedlichen eindimensionalen Rechteckstrukturen verwendet, die eine Nominalhöhe im kritischen Bereich kleiner der Kohärenzlänge der verwendeten Lichtquelle aufweisen. Die Ergebnisse bestätigen sich aber auch an technischen Messobjekten aus der Praxis wie beispielsweise einer „digital video disc“.
Resumo:
Die vorliegende Arbeit untersucht die Integrierbarkeit von Photodioden und zugehörigen Signalvorverarbeitungen mit dem preisgünstigen Standard-0,5-µm-Prozess bzw. 0,35-µm-CMOS-Prozess. Als Pilotanwendung wurde die Realisierung eines flexiblen Ortfrequenzfilters vorgesehen, der durch die Verschaltung und die Wichtung von integrierten Photodioden gebildet wird. Mit einem integrierten optoelektronischen Bauteil (Opto-ASIC) sollte die Funktionaliät eines CORREVIT®-Sensors (der Firma Corrsys 3D Sensors) aus Prismengitter, Feldlinse, Photodioden und Vorverstärker nachgebildet und seine Funktionalität erweitert werden. Dazu sollte dieser Opto-ASIC eine Photodiodenzeile enthalten, die im Unterschied zu dem bestehenden CORREVIT®-Sensor durch die programmierbare Verschaltung und die Wichtung der Signale der Photodioden unterschiedliche Ortsfrequenz-Bandpassfilter erzeugen sollte, um unterschiedliche Gitterkonstanten (Ortsfrequenzen) zur optimalen Anpassung des Sensors an die jeweilige Oberfläche realisieren zu können. Neue Ortsfrequenzfilter können mehrere Fehlereinflüsse handelsüblicher Sensoren größtenteils vermeiden. Dazu sollten die Filter symmetrisch sein und die Summen ihrer Wichtungen sollten zu Null werden. Die Photodioden als Elementarbauteile der Ortsfilter werden genau untersucht und optimiert, da die Eigenschaften der Photodioden die Qualität der Messsignale stark beeinflussen. Mit einem neuen entwickelten Messverfahren lässt sich die lokale Empfindlichekeit auf dem ASIC mit einer Auflösung ab 0,5 µm messen. Durch diese Messungen konnte die optimale Geometrie festgelegt werden. Es konnte gezeigt werden, dass die Empfindlichkeit der Photodioden in den Randbereichen (lateraler Bereich) erheblich höher ist als im Tiefenbereich (vertikaler Bereich). Es wurde deshalb vorgeschlagen, die Photodioden, die dann abhängig von der Struktur als Fingerdiode oder geschlitzte Diode bezeichnet wurden, in viele Teilflächen zu unterteilen. Zur Realisierung des Ortsfrequenzfilters wurde ein Schaltungssystem zur Signalverarbeitung und Verschaltung der Photodioden entwickelt. Dieser Schaltkreis setzt sich aus Transimpedanzverstärker, Diffenzverstärker, Schalter und einem Schieberegister zusammen.