11 resultados para Optical sensor systems

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mikrooptische Filter sind heutzutage in vielen Bereichen in der Telekommunikation unersetzlich. Wichtige Einsatzgebiete sind aber auch spektroskopische Systeme in der Medizin-, Prozess- und Umwelttechnik. Diese Arbeit befasst sich mit der Technologieentwicklung und Herstellung von luftspaltbasierenden, vertikal auf einem Substrat angeordneten, oberflächenmikromechanisch hergestellten Fabry-Perot-Filtern. Es werden zwei verschiedene Filtervarianten, basierend auf zwei verschiedenen Materialsystemen, ausführlich untersucht. Zum einen handelt es sich dabei um die Weiterentwicklung von kontinuierlich mikromechanisch durchstimmbaren InP / Luftspaltfiltern; zum anderen werden neuartige, kostengünstige Siliziumnitrid / Luftspaltfilter wissenschaftlich behandelt. Der Inhalt der Arbeit ist so gegliedert, dass nach einer Einleitung mit Vergleichen zu Arbeiten und Ergebnissen anderer Forschergruppen weltweit, zunächst einige theoretische Grundlagen zur Berechnung der spektralen Reflektivität und Transmission von beliebigen optischen Schichtanordnungen aufgezeigt werden. Auß erdem wird ein kurzer theoretischer Ü berblick zu wichtigen Eigenschaften von Fabry-Perot-Filtern sowie der Möglichkeit einer mikromechanischen Durchstimmbarkeit gegeben. Daran anschließ end folgt ein Kapitel, welches sich den grundlegenden technologischen Aspekten der Herstellung von luftspaltbasierenden Filtern widmet. Es wird ein Zusammenhang zu wichtigen Referenzarbeiten hergestellt, auf denen diverse Weiterentwicklungen dieser Arbeit basieren. Die beiden folgenden Kapitel erläutern dann ausführlich das Design, die Herstellung und die Charakterisierung der beiden oben erwähnten Filtervarianten. Abgesehen von der vorangehenden Epitaxie von InP / GaInAs Schichten, ist die Herstellung der InP / Luftspaltfilter komplett im Institut durchgeführt worden. Die Herstellungsschritte sind ausführlich in der Arbeit erläutert, wobei ein Schwerpunktthema das trockenchemische Ä tzen von InP sowie GaInAs, welches als Opferschichtmaterial für die Herstellung der Luftspalte genutzt wurde, behandelt. Im Verlauf der wissenschaftlichen Arbeit konnten sehr wichtige technische Verbesserungen entwickelt und eingesetzt werden, welche zu einer effizienteren technologischen Herstellung der Filter führten und in der vorliegenden Niederschrift ausführlich dokumentiert sind. Die hergestellten, für einen Einsatz in der optischen Telekommunikation entworfenen, elektrostatisch aktuierbaren Filter sind aus zwei luftspaltbasierenden Braggspiegeln aufgebaut, welche wiederum jeweils 3 InP-Schichten von (je nach Design) 357nm bzw. 367nm Dicke aufweisen. Die Filter bestehen aus im definierten Abstand parallel übereinander angeordneten Membranen, die über Verbindungsbrücken unterschiedlicher Anzahl und Länge an Haltepfosten befestigt sind. Da die mit 357nm bzw. 367nm vergleichsweise sehr dünnen Schichten freitragende Konstrukte mit bis zu 140 nm Länge bilden, aber trotzdem Positionsgenauigkeiten im nm-Bereich einhalten müssen, handelt es sich hierbei um sehr anspruchsvolle mikromechanische Bauelemente. Um den Einfluss der zahlreichen geometrischen Strukturparameter studieren zu können, wurden verschiedene laterale Filterdesigns implementiert. Mit den realisierten Filter konnte ein enorm weiter spektraler Abstimmbereich erzielt werden. Je nach lateralem Design wurden internationale Bestwerte für durchstimmbare Fabry-Perot-Filter von mehr als 140nm erreicht. Die Abstimmung konnte dabei kontinuierlich mit einer angelegten Spannung von nur wenigen Volt durchgeführt werden. Im Vergleich zu früher berichteten Ergebnissen konnten damit sowohl die Wellenlängenabstimmung als auch die dafür benötigte Abstimmungsspannung signifikant verbessert werden. Durch den hohen Brechungsindexkontrast und die geringe Schichtdicke zeigen die Filter ein vorteilhaftes, extrem weites Stopband in der Größ enordnung um 550nm. Die gewählten, sehr kurzen Kavitätslängen ermöglichen einen freien Spektralbereich des Filters welcher ebenfalls in diesen Größ enordnungen liegt, so dass ein weiter spektraler Einsatzbereich ermöglicht wird. Während der Arbeit zeigte sich, dass Verspannungen in den freitragenden InPSchichten die Funktionsweise der mikrooptischen Filter stark beeinflussen bzw. behindern. Insbesondere eine Unterätzung der Haltepfosten und die daraus resultierende Verbiegung der Ecken an denen sich die Verbindungsbrücken befinden, führte zu enormen vertikalen Membranverschiebungen, welche die Filtereigenschaften verändern. Um optimale Ergebnisse zu erreichen, muss eine weitere Verbesserung der Epitaxie erfolgen. Jedoch konnten durch den zusätzlichen Einsatz einer speziellen Schutzmaske die Unterätzung der Haltepfosten und damit starke vertikale Verformungen reduziert werden. Die aus der Verspannung resultierenden Verformungen und die Reaktion einzelner freistehender InP Schichten auf eine angelegte Gleich- oder Wechselspannung wurde detailliert untersucht. Mittels Weisslichtinterferometrie wurden lateral identische Strukturen verglichen, die aus unterschiedlich dicken InP-Schichten (357nm bzw. 1065nm) bestehen. Einen weiteren Hauptteil der Arbeit stellen Siliziumnitrid / Luftspaltfilter dar, welche auf einem neuen, im Rahmen dieser Dissertation entwickelten, technologischen Ansatz basieren. Die Filter bestehen aus zwei Braggspiegeln, die jeweils aus fünf 590nm dicken, freistehenden Siliziumnitridschichten aufgebaut sind und einem Abstand von 390nm untereinander aufweisen. Die Filter wurden auf Glassubstraten hergestellt. Der Herstellungsprozess ist jedoch auch mit vielen anderen Materialien oder Prozessen kompatibel, so dass z.B. eine Integration mit anderen Bauelemente relativ leicht möglich ist. Die Prozesse dieser ebenfalls oberflächenmikromechanisch hergestellten Filter wurden konsequent auf niedrige Herstellungskosten optimiert. Als Opferschichtmaterial wurde hier amorph abgeschiedenes Silizium verwendet. Der Herstellungsprozess beinhaltet die Abscheidung verspannungsoptimierter Schichten (Silizium und Siliziumnitrid) mittels PECVD, die laterale Strukturierung per reaktiven Ionenätzen mit den Gasen SF6 / CHF3 / Ar sowie Fotolack als Maske, die nasschemische Unterätzung der Opferschichten mittels KOH und das Kritisch-Punkt-Trocken der Proben. Die Ergebnisse der optischen Charakterisierung der Filter zeigen eine hohe Ü bereinstimmung zwischen den experimentell ermittelten Daten und den korrespondierenden theoretischen Modellrechnungen. Weisslichtinterferometermessungen der freigeätzten Strukturen zeigen ebene Filterschichten und bestätigen die hohe vertikale Positioniergenauigkeit, die mit diesem technologischen Ansatz erreicht werden kann.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physikalische Grundlagenforschung und anwendungsorientierte physikalische Forschung auf den Gebieten nanoskaliger kristalliner und amorpher fester Körper haben in vielfacher Weise eine große Bedeutung. Neben dem Verständnis für die Struktur der Materie und die Wechselwirkung von Objekten von der Größe einiger Atome ist die Erkenntnis über die physikalischen Eigenschaften nanostrukturierter Systeme von hohem Interesse. Diese Forschung eröffnet die Möglichkeit, die mit der Mikroelektronik begonnene Miniaturisierung fortzusetzen und wird darüber hinaus neue Anwendungsfelder eröffnen. Das Erarbeiten der physikalischen Grundlagen der Methoden zur Herstellung und Strukturierung ist dabei zwingend notwendig, da hier Wirkungsprinzipien dominieren, die erst bei Strukturgrößen im Nanometerbereich auftreten oder hinreichend stark ausgeprägt sind. Insbesondere Halbleitermaterialien sind hier von großem Interesse. Die in dieser Arbeit untersuchten Resonatorstrukturen, die auf dem kristallinen Verbindungshalbleitermaterial GaInAsP/InP basieren, erschließen wichtige Anwendungsfelder im Bereich der optischen Datenübertragung sowie der optischen Sensorik. Hergestellt wird das Halbleitermaterial mit der Metallorganischen Gasphasenepitaxie. Die experimentell besimmten Kenngrößen lassen Rückschlüsse auf die Güte der Materialien, die quantenmechanischen Wirkungsprinzipien und die Bauelementcharakteristik zu und führen zu optimal angepassten Kristallstrukturen. Auf Basis dieser optimierten Materialien wurde ein durchstimmbarer Fabry-Perot-Filter hergestellt, der aus einer Kombination aus InP-Membranen und Luftspalten besteht und elektromechanisch aktuiert werden kann. Das GaInAsP dient hierbei als wenige hundert nm dicke Opferschicht, die ätztechnisch hochselektiv beseitigt wird. Die Qualität der Grenzflächen zum InP ist entscheidend für die Qualität der freigeätzten Kavitäten und damit für die mechanische Gesamtstabilität der Struktur. Der in dieser Arbeit beschriebene Filter hat eine Zentralwellenlänge im Bereich von 1550 nm und weist einen Durchstimmbereich von 221 nm auf. Erzielt wurde dieser Wert durch ein konsistentes Modell der wirkenden Verspannungskomponenten und einer optimierten epitaktischen Kontrolle der Verspannungsparameter. Das realisierte Filterbauelement ist vielversprechend für den Einsatz in der optischen Kommunikation im Bereich von WDM (wavelength division multiplexing) Anwendungen. Als weitere Resonatorstrukur wurde ein Asymmetrisch gekoppelter Quantenfilm als optisch aktives Medium, bestehend aus GaInAsP mit variierender Materialkomposition und Verspannung, untersucht, um sein Potential für eine breitbandige Emission zu untersuchen und mit bekannten Modellen zu vergleichen. Als Bauelementdesign wurde eine kantenemittierende Superlumineszenzleuchtdiode gewählt. Das Ergebnis ist eine Emissionskurve von 100 nm, die eine höhere Unabhängigkeit vom Injektionsstrom aufweist als andere bekannte Konzepte. Die quantenmechanischen Wirkungsprinzipien - im wesentlichen die Kopplung der beiden asymmetrischen Potentialtöpfe und die damit verbundene Kopplung der Wellenfunktionen - werden qualitativ diskutiert. Insgesamt bestätigt sich die Eignung des Materials GaInAsP auch für neuartige, qualitativ höchst anspruchsvolle Resonatorstrukturen und die Bedeutung der vorgestellten und untersuchten Resonatorkonzepte. Die vorgestellten Methoden, Materialien und Bauelemente liefern aufgrund ihrer Konzeption und der eingehenden experimentellen Untersuchungen einen Beitrag sowohl zu den zugrunde liegenden mechanischen, optoelektronischen und quantenmechanischen Wirkungsprinzipien der Strukturen, als auch zur Realisierung neuer optoelektronischer Bauelemente.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-speed semiconductor lasers are an integral part in the implemen- tation of high-bit-rate optical communications systems. They are com- pact, rugged, reliable, long-lived, and relatively inexpensive sources of coherent light. Due to the very low attenuation window that exists in the silica based optical fiber at 1.55 μm and the zero dispersion point at 1.3 μm, they have become the mainstay of optical fiber com- munication systems. For the fabrication of lasers with gratings such as, distributed bragg reflector or distributed feedback lasers, etching is the most critical step. Etching defines the lateral dimmensions of the structure which determines the performance of optoelectronic devices. In this thesis studies and experiments were carried out about the exist- ing etching processes for InP and a novel dry etching process was de- veloped. The newly developed process was based on Cl2/CH4/H2/Ar chemistry and resulted in very smooth surfaces and vertical side walls. With this process the grating definition was significantly improved as compared to other technological developments in the respective field. A surface defined grating definition approach is used in this thesis work which does not require any re-growth steps and makes the whole fabrication process simpler and cost effective. Moreover, this grating fabrication process is fully compatible with nano-imprint lithography and can be used for high throughput low-cost manufacturing. With usual etching techniques reported before it is not possible to etch very deep because of aspect ratio dependent etching phenomenon where with increasing etch depth the etch rate slows down resulting in non-vertical side walls and footing effects. Although with our de- veloped process quite vertical side walls were achieved but footing was still a problem. To overcome the challenges related to grating defini- tion and deep etching, a completely new three step gas chopping dry etching process was developed. This was the very first time that a time multiplexed etching process for an InP based material system was demonstrated. The developed gas chopping process showed extra ordinary results including high mask selectivity of 15, moderate etch- ing rate, very vertical side walls and a record high aspect ratio of 41. Both the developed etching processes are completely compatible with nano imprint lithography and can be used for low-cost high-throughput fabrication. A large number of broad area laser, ridge waveguide laser, distributed feedback laser, distributed bragg reflector laser and coupled cavity in- jection grating lasers were fabricated using the developed one step etch- ing process. Very extensive characterization was done to optimize all the important design and fabrication parameters. The devices devel- oped have shown excellent performance with a very high side mode suppression ratio of more than 52 dB, an output power of 17 mW per facet, high efficiency of 0.15 W/A, stable operation over temperature and injected currents and a threshold current as low as 30 mA for almost 1 mm long device. A record high modulation bandwidth of 15 GHz with electron-photon resonance and open eye diagrams for 10 Gbps data transmission were also shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At present, a fraction of 0.1 - 0.2% of the patients undergoing surgery become aware during the process. The situation is referred to as anesthesia awareness and is obviously very traumatic for the person experiencing it. The reason for its occurrence is mostly an insufficient dosage of the narcotic Propofol combined with the incapability of the technology monitoring the depth of the patient’s anesthetic state to notice the patient becoming aware. A solution can be a highly sensitive and selective real time monitoring device for Propofol based on optical absorption spectroscopy. Its working principle has been postulated by Prof. Dr. habil. H. Hillmer and formulated in DE10 2004 037 519 B4, filed on Aug 30th, 2004. It consists of the exploitation of Intra Cavity Absorption effects in a two mode laser system. In this Dissertation, a two mode external cavity semiconductor laser, which has been developed previously to this work is enhanced and optimized to a functional sensor. Enhancements include the implementation of variable couplers into the system and the implementation of a collimator arrangement into which samples can be introduced. A sample holder and cells are developed and characterized with a focus on compatibility with the measurement approach. Further optimization concerns the overall performance of the system: scattering sources are reduced by re-splicing all fiber-to-fiber connections, parasitic cavities are eliminated by suppressing the Fresnel reflexes of all one fiber ends by means of optical isolators and wavelength stability of the system is improved by the implementation of thermal insulation to the Fiber Bragg Gratings (FBG). The final laser sensor is characterized in detail thermally and optically. Two separate modes are obtained at 1542.0 and 1542.5 nm, tunable in a range of 1nm each. Mode Full Width at Half Maximum (FWHM) is 0.06nm and Signal to Noise Ratio (SNR) is as high as 55 dB. Independent of tuning the two modes of the system can always be equalized in intensity, which is important as the delicacy of the intensity equilibrium is one of the main sensitivity enhancing effects formulated in DE10 2004 037 519 B4. For the proof of concept (POC) measurements the target substance Propofol is diluted in the solvents Acetone and DiChloroMethane (DCM), which have been investigated for compatibility with Propofol beforehand. Eight measurement series (two solvents, two cell lengths and two different mode spacings) are taken, which draw a uniform picture: mode intensity ratio responds linearly to an increase of Propofol in all cases. The slope of the linear response indicates the sensitivity of the system. The eight series are split up into two groups: measurements taken in long cells and measurements taken in short cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of feed intake, feeding time and rumination time, summarized by the term feeding behavior, are helpful indicators for early recognition of animals which show deviations in their behavior. The overall objective of this work was the development of an early warning system for inadequate feeding rations and digestive and metabolic disorders, which prevention constitutes the basis for health, performance, and reproduction. In a literature review, the current state of the art and the suitability of different measurement tools to determine feeding behavior of ruminants was discussed. Five measurement methods based on different methodological approaches (visual observance, pressure transducer, electrical switches, electrical deformation sensors and acoustic biotelemetry), and three selected measurement techniques (the IGER Behavior Recorder, the Hi-Tag rumination monitoring system and RumiWatchSystem) were described, assessed and compared to each other within this review. In the second study, the new system for measuring feeding behavior of dairy cows was evaluated. The measurement of feeding behavior ensues through electromyography (EMG). For validation, the feeding behavior of 14 cows was determined by both the EMG system and by visual observation. The high correlation coefficients indicate that the current system is a reliable and suitable tool for monitoring the feeding behavior of dairy cows. The aim of a further study was to compare the DairyCheck (DC) system and two additional measurement systems for measuring rumination behavior in relation to efficiency, reliability and reproducibility, with respect to each other. The two additional systems were labeled as the Lely Qwes HR (HR) sensor, and the RumiWatchSystem (RW). Results of accordance of RW and DC to each other were high. The last study examined whether rumination time (RT) is affected by the onset of calving and if it might be a useful indicator for the prediction of imminent birth. Data analysis referred to the final 72h before the onset of calving, which were divided into twelve 6h-blocks. The results showed that RT was significantly reduced in the final 6h before imminent birth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents the developement of an chemically stable and easy to produce in situ sensor for fast and reliable detection of polycyclic aromatic hydrocarbons (PAH) in low nanomolar concentrations. Metallic nanoparticles on dielectric substrates werde used for the rst time with surface enhanced Raman spectroscopy (SERS) in combination with shifted excitation Raman difference spectroscopy (SERDS). The preparation of the metallic nanoparticle ensembles with Volmer-Webergrowth is described first. The nanoparticles are characterized with both, optical spectroscopy and atomic force microscopy. The morphological properties of the nanoparticle ensembles are de ned by the mean axial ratio (a/b) and the mean equivalent radius (R Äq), respectively. The prepared and characterized nanoparticles were then used for intensive Raman spectroscopy measurements. Two sophisticated diode laser systems were used in cooperation with the TU Berlin, to carry out these experiments. The first step was to establish the ideal combination of excitation wavelength of the diode laser and the maximum of the surface plasmon resonance of the nanoparticle ensembles. From these results it was deduced, that for an optimum Raman signal the plasmon resonance maximum of the nanoparticle ensemble has to be red-shifted a few nanometeres in respect to the excitation wavelength. Different PAHs werde detected in concentrations of only 2 and 0.5 nmol/, respectively. Furthermore, the obtained results show an excellent reproducability. In addition the time dependence of the Raman signal intensity was investigated. The results of these measurements show, that only 2 minutes after placing the substrates in the molecular solution, a detectable Raman signal was generated. The maximum Raman signal, i.e. the time in which the molecular adsorption process is finished, was determined to about 10 minutes. In summary it was shown, that the used metallic nanoparticle ensembles are highly usable as substrates for SERS in combination with SERDS to detect PAHs in low nanomolar concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the thesis is to theoretically investigate optical/plasmonic antennas for biosensing applications. The full 3-D numerical electromagnetic simulations have been performed by using finite integration technique (FIT). The electromagnetic properties of surface plasmon polaritons (SPPs) and the localized surface plasmons (LSPs) based devices are studied for sensing purpose. The surface plasmon resonance (SPR) biosensors offer high refractive index sensitivity at a fixed wavelength but are not enough for the detection of low concentrations of molecules. It has been demonstrated that the sensitivity of SPR sensors can be increased by employing the transverse magneto-optic Kerr effect (TMOKE) in combination with SPPs. The sensor based on the phenomena of TMOKE and SPPs are known as magneto-optic SPR (MOSPR) sensors. The optimized MOSPR sensor is analyzed which provides 8 times higher sensitivity than the SPR sensor, which will be able to detect lower concentration of molecules. But, the range of the refractive index detection is limited, due to the rapid decay of the amplitude of the MOSPR-signal with the increase of the refractive indices. Whereas, LSPs based sensors can detect lower concentrations of molecules, but their sensitivity is small at a fixed wavelength. Therefore, another device configuration known as perfect plasmonic absorber (PPA) is investigated which is based on the phenomena of metal-insulator-metal (MIM) waveguide. The PPA consists of a periodic array of gold nanoparticles and a thick gold film separated by a dielectric spacer. The electromagnetic modes of the PPA system are analyzed for sensing purpose. The second order mode of the PPA at a fixed wavelength has been proposed for the first time for biosensing applications. The PPA based sensor combines the properties of the LSPR sensor and the SPR sensor, for example, it illustrates increment in sensitivity of the LSPR sensor comparable to the SPR and can detect lower concentration of molecules due to the presence of nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Wechselwirkungen zwischen Biomolekülen spielen eine zentrale Rolle in der biochemischen und pharmazeutischen Forschung. In der biomolekularen Interaktionsanalyse sind dabei Biosensoren auf Basis des Oberflächenplasmonresonanzeffekts (SPR-Effekt) weitverbreitet. Seit Einführung der ersten kommerziellen SPR-Biosensoren Anfang der 1990er Jahre wurden verschiedenste Messanordnungen sowie Materialsysteme mit dem Ziel einer möglichst hohen Empfindlichkeit getestet. Eine Möglichkeit zur Steigerung der Empfindlichkeit klassischer SPR-Systeme bieten sogenannte magneto-optische SPR-Biosensoren (MOSPR-Biosensoren). Grundlage der Empfindlichkeitssteigerung ist die gleichzeitige Messung des SPR-Effekts und des transversalen magneto-optischen KERR-Effekts (tMOKE). Bisherige Untersuchungen haben sich meist auf den Einfluss der Magnetisierung freier ferromagnetischer Schichten beschränkt. Im Rahmen dieser Arbeit wurden erstmals austauschverschobene Dünnschichtsysteme (EB-Systeme), eine Kombination aus Ferromagnet und Antiferromagnet, hinsichtlich ihrer Eignung für SPR- und MOSPR-basierte biosensorische Anwendungen untersucht. Aufgrund der remanenten Magnetisierung der ferromagnetischen Schicht und ihrer magnetischen Strukturierbarkeit sind EB-Systeme eine hochinteressante Plattform zur Realisierung neuer Biosensorkonzepte. Zur Reduzierung der stark dämpfendenden Wirkung magnetischer Materialien wurde das hier betrachtete IrMn/Co EB-System zwischen zwei Goldschichten eingebettet. Eine Gegenüberstellung optimierter Au/ IrMn/Co/Au-Systeme mit einem reinen Au-System, wie es typischerweise in kommerziellen SPR-basierten Biosensoren eingesetzt wird, demonstriert, dass mit den entwickelten EB-Systemen vergleichbare Empfindlichkeiten in SPR-Sensor-Anwendungen erreicht werden können. Die magneto-optische Aktivität der untersuchten Dünnschichtsysteme liegt im Bereich der Literaturwerte für Au/Co/Au-Systeme, mit denen erhöhte Empfindlichkeiten gegenüber Standard-SPR-Biosensoren realisiert wurden. Auf Grundlage magnetisch strukturierter Au/IrMn/Co/Au-Systeme wurden neue Biosensorkonzepte entwickelt und getestet. Erste Experimente belegen, dass mit diesen Schichtsystemen eine gleichzeitige Detektion der magnetisierungsabhängigen Reflektivitäten in ortsauflösenden MOSPR-Messungen möglich ist. Eine solche Messanordnung profitiert von der erhöhten Empfindlichkeit MOSPR-basierter Biosensoren, hohen Messgeschwindigkeiten und einem verbesserten Signal-Rausch-Verhältnis. Weiterhin wurde der domänenwandassistierte Transport (DOWMAT) superparamagnetischer Partikel über der Oberfläche eines exemplarischen EB-Systems, zur Sensorintegration von Misch-, Reinigungs- und Aufkonzentrationsfunktionen erfolgreich getestet. Die Ergebnisse demonstrieren, dass ein Transport von Partikelreihen mit hohen Geschwindigkeiten bei moderaten externen Magnetfeldern über den entwickelten Schichtsystemen möglich ist. Die Agglomeration der Partikel wird dabei intrinsisch vermieden. Diese Beobachtungen verdeutlichen die Vorzüge des DOWMAT-Mechanismus für biosensorische Anwendungen. Die präsentierten Untersuchungen bilden die Grundlage auf dem Weg zur Umsetzung neuer vielversprechender Biosensorkonzepte, die eine Schlüsselfunktion in der medizinischen point-of-care-Diagnostik bei der Detektion kleinster Konzentrationen krankheitsrelevanter Biomarker einnehmen können.