1 resultado para ORDER ACCURACY APPROXIMATIONS
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Filtro por publicador
- Academic Archive On-line (Karlstad University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (20)
- Center for Jewish History Digital Collections (4)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (33)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Cornell: DigitalCommons@ILR (1)
- CUNY Academic Works (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (44)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Indian Institute of Science - Bangalore - Índia (290)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (11)
- Queensland University of Technology - ePrints Archive (414)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (15)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (17)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (2)
Resumo:
The method of approximate approximations is based on generating functions representing an approximate partition of the unity, only. In the present paper this method is used for the numerical solution of the Poisson equation and the Stokes system in R^n (n = 2, 3). The corresponding approximate volume potentials will be computed explicitly in these cases, containing a one-dimensional integral, only. Numerical simulations show the efficiency of the method and confirm the expected convergence of essentially second order, depending on the smoothness of the data.