7 resultados para OPTICAL CHARACTERIZATION
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In this thesis, optical gain measurement setup based on variable stripe length method is designed, implemented and improved. The setup is characterized using inorganic and organic samples. The optical gain of spiro-quaterphenyl is calculated and compared with measurements from the setup. Films with various thicknesses of spiro-quaterphenyl, methoxy-spiro-quaterphenyl and phenoxy-spiro-quaterphenyl are deposited by a vacuum vapor deposition technique forming asymmetric slab waveguides. The optical properties, laser emission threshold, optical gain and loss coefficient for these films are measured. Additionally, the photodegradation during pumping process is investigated.
Resumo:
Optische Spektroskopie ist eine sehr wichtige Messtechnik mit einem hohen Potential für zahlreiche Anwendungen in der Industrie und Wissenschaft. Kostengünstige und miniaturisierte Spektrometer z.B. werden besonders für moderne Sensorsysteme “smart personal environments” benötigt, die vor allem in der Energietechnik, Messtechnik, Sicherheitstechnik (safety and security), IT und Medizintechnik verwendet werden. Unter allen miniaturisierten Spektrometern ist eines der attraktivsten Miniaturisierungsverfahren das Fabry Pérot Filter. Bei diesem Verfahren kann die Kombination von einem Fabry Pérot (FP) Filterarray und einem Detektorarray als Mikrospektrometer funktionieren. Jeder Detektor entspricht einem einzelnen Filter, um ein sehr schmales Band von Wellenlängen, die durch das Filter durchgelassen werden, zu detektieren. Ein Array von FP-Filter wird eingesetzt, bei dem jeder Filter eine unterschiedliche spektrale Filterlinie auswählt. Die spektrale Position jedes Bandes der Wellenlänge wird durch die einzelnen Kavitätshöhe des Filters definiert. Die Arrays wurden mit Filtergrößen, die nur durch die Array-Dimension der einzelnen Detektoren begrenzt werden, entwickelt. Allerdings erfordern die bestehenden Fabry Pérot Filter-Mikrospektrometer komplizierte Fertigungsschritte für die Strukturierung der 3D-Filter-Kavitäten mit unterschiedlichen Höhen, die nicht kosteneffizient für eine industrielle Fertigung sind. Um die Kosten bei Aufrechterhaltung der herausragenden Vorteile der FP-Filter-Struktur zu reduzieren, wird eine neue Methode zur Herstellung der miniaturisierten FP-Filtern mittels NanoImprint Technologie entwickelt und präsentiert. In diesem Fall werden die mehreren Kavitäten-Herstellungsschritte durch einen einzigen Schritt ersetzt, die hohe vertikale Auflösung der 3D NanoImprint Technologie verwendet. Seit dem die NanoImprint Technologie verwendet wird, wird das auf FP Filters basierende miniaturisierte Spectrometer nanospectrometer genannt. Ein statischer Nano-Spektrometer besteht aus einem statischen FP-Filterarray auf einem Detektorarray (siehe Abb. 1). Jeder FP-Filter im Array besteht aus dem unteren Distributed Bragg Reflector (DBR), einer Resonanz-Kavität und einen oberen DBR. Der obere und untere DBR sind identisch und bestehen aus periodisch abwechselnden dünnen dielektrischen Schichten von Materialien mit hohem und niedrigem Brechungsindex. Die optischen Schichten jeder dielektrischen Dünnfilmschicht, die in dem DBR enthalten sind, entsprechen einen Viertel der Design-Wellenlänge. Jeder FP-Filter wird einer definierten Fläche des Detektorarrays zugeordnet. Dieser Bereich kann aus einzelnen Detektorelementen oder deren Gruppen enthalten. Daher werden die Seitenkanal-Geometrien der Kavität aufgebaut, die dem Detektor entsprechen. Die seitlichen und vertikalen Dimensionen der Kavität werden genau durch 3D NanoImprint Technologie aufgebaut. Die Kavitäten haben Unterschiede von wenigem Nanometer in der vertikalen Richtung. Die Präzision der Kavität in der vertikalen Richtung ist ein wichtiger Faktor, der die Genauigkeit der spektralen Position und Durchlässigkeit des Filters Transmissionslinie beeinflusst.
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
In dieser Arbeit werden optische Filterarrays für hochqualitative spektroskopische Anwendungen im sichtbaren (VIS) Wellenlängenbereich untersucht. Die optischen Filter, bestehend aus Fabry-Pérot (FP)-Filtern für hochauflösende miniaturisierte optische Nanospektrometer, basieren auf zwei hochreflektierenden dielektrischen Spiegeln und einer zwischenliegenden Resonanzkavität aus Polymer. Jeder Filter erlaubt einem schmalbandigem spektralen Band (in dieser Arbeit Filterlinie genannt) ,abhängig von der Höhe der Resonanzkavität, zu passieren. Die Effizienz eines solchen optischen Filters hängt von der präzisen Herstellung der hochselektiven multispektralen Filterfelder von FP-Filtern mittels kostengünstigen und hochdurchsatz Methoden ab. Die Herstellung der multiplen Spektralfilter über den gesamten sichtbaren Bereich wird durch einen einzelnen Prägeschritt durch die 3D Nanoimprint-Technologie mit sehr hoher vertikaler Auflösung auf einem Substrat erreicht. Der Schlüssel für diese Prozessintegration ist die Herstellung von 3D Nanoimprint-Stempeln mit den gewünschten Feldern von Filterkavitäten. Die spektrale Sensitivität von diesen effizienten optischen Filtern hängt von der Genauigkeit der vertikalen variierenden Kavitäten ab, die durch eine großflächige ‚weiche„ Nanoimprint-Technologie, UV oberflächenkonforme Imprint Lithographie (UV-SCIL), ab. Die Hauptprobleme von UV-basierten SCIL-Prozessen, wie eine nichtuniforme Restschichtdicke und Schrumpfung des Polymers ergeben Grenzen in der potenziellen Anwendung dieser Technologie. Es ist sehr wichtig, dass die Restschichtdicke gering und uniform ist, damit die kritischen Dimensionen des funktionellen 3D Musters während des Plasmaätzens zur Entfernung der Restschichtdicke kontrolliert werden kann. Im Fall des Nanospektrometers variieren die Kavitäten zwischen den benachbarten FP-Filtern vertikal sodass sich das Volumen von jedem einzelnen Filter verändert , was zu einer Höhenänderung der Restschichtdicke unter jedem Filter führt. Das volumetrische Schrumpfen, das durch den Polymerisationsprozess hervorgerufen wird, beeinträchtigt die Größe und Dimension der gestempelten Polymerkavitäten. Das Verhalten des großflächigen UV-SCIL Prozesses wird durch die Verwendung von einem Design mit ausgeglichenen Volumen verbessert und die Prozessbedingungen werden optimiert. Das Stempeldesign mit ausgeglichen Volumen verteilt 64 vertikal variierenden Filterkavitäten in Einheiten von 4 Kavitäten, die ein gemeinsames Durchschnittsvolumen haben. Durch die Benutzung der ausgeglichenen Volumen werden einheitliche Restschichtdicken (110 nm) über alle Filterhöhen erhalten. Die quantitative Analyse der Polymerschrumpfung wird in iii lateraler und vertikaler Richtung der FP-Filter untersucht. Das Schrumpfen in vertikaler Richtung hat den größten Einfluss auf die spektrale Antwort der Filter und wird durch die Änderung der Belichtungszeit von 12% auf 4% reduziert. FP Filter die mittels des Volumengemittelten Stempels und des optimierten Imprintprozesses hergestellt wurden, zeigen eine hohe Qualität der spektralen Antwort mit linearer Abhängigkeit zwischen den Kavitätshöhen und der spektralen Position der zugehörigen Filterlinien.
Resumo:
This work deals with the optical properties of supported noble metal nanoparticles, which are dominated by the so-called Mie resonance and are strongly dependent on the particles’ morphology. For this reason, characterization and control of the dimension of these systems are desired in order to optimize their applications. Gold and silver nanoparticles have been produced on dielectric supports like quartz glass, sapphire and rutile, by the technique of vapor deposition under ultra-high vacuum conditions. During the preparation, coalescence is observed as an important mechanism of cluster growth. The particles have been studied in situ by optical transmission spectroscopy and ex situ by atomic force microscopy. It is shown that the morphology of the aggregates can be regarded as oblate spheroids. A theoretical treatment of their optical properties, based on the quasistatic approximation, and its combination with results obtained by atomic force microscopy give a detailed characterization of the nanoparticles. This method has been compared with transmission electron microscopy and the results are in excellent agreement. Tailoring of the clusters’ dimensions by irradiation with nanosecond-pulsed laser light has been investigated. Selected particles are heated within the ensemble by excitation of the Mie resonance under irradiation with a tunable laser source. Laser-induced coalescence prevents strongly tailoring of the particle size. Nevertheless, control of the particle shape is possible. Laser-tailored ensembles have been tested as substrates for surface-enhanced Raman spectroscopy (SERS), leading to an improvement of the results. Moreover, they constitute reproducible, robust and tunable SERS-substrates with a high potential for specific applications, in the present case focused on environmental protection. Thereby, these SERS-substrates are ideally suited for routine measurements.
Resumo:
Spiro-starburst-structures with symmetric globular structures in forms of first and second generations that readily form stable amorphous glasses have been synthesized and then characterised in this work. During the synthesis of these materials, possibilities of the extension of the chains of the phenyl rings in 2,2’,7 and 7’-positions of the central core of the spirobifluorene as well as the 2’,7 and 7’-positions of the terminal spirobifluorene units of the spiro-starburst-structures have been investigated so that solubilities and morphologies of the compounds are not negatively influenced. Their morphological properties have been explored by recording their decomposition temperature and glass transition temperature. These compounds possessing two perpendicular arrangement of the two molecular halves show high glass transition temperature (Tg), which is one of the most important parameter indicating the stability of the amorphous state of the material for optoelectronic devices like organic light emitting diodes. Within the species of second generation compounds, for example, 4-spiro3 shows the highest Tg (330 °C) and the highest branching degree. When one [4B(SBF)SBF-SBF 84] or two [4SBFSBF-SBF 79] terminal spirobifluorene units are removed, the Tg decreases to 318 °C and 307 °C respectively. Photo absorption and fluorescence spectra and cyclic voltammetry measurements are taken in account to characterize the optoelectronic properties of the compounds. Spiro-starburst-structures emit radiation in the blue region of the visible spectrum. The peak maxima of absorption and emission spectra are observed to be at higher wavelength in the molecules with longer chromophore chains than in the molecules with shorter chromophore chains. Excitation spectra are monitored with their emission peak maxima. The increasing absorbing species in molecule leads to increasing molar extinction coefficient. In the case of 4B(TP)SBF-SBF 53 and 4B(SBF)SBF-SBF 84, the greater values of the molar extinction coefficients (43*104 and 44*104 L mol-1 cm-1 respectively) are the evidences of the presence of four times octiphenyl conjugation rings and eight times terminal fluorene units respectively. The optical properties of solid states of these compounds in the form of thin film indicate that the intermolecular interaction and aggregation of individual molecules in neat amorphous films are effectively hindered by their sterically demanding structures. Accordingly, in solid state, they behave like isolated molecules in highly dilute solution. Cyclic voltammetry measurements of these compounds show electrochemically reversibility and stability. Furthermore, the zeolitic nature (host-guest) of the molecular sieve of the synthesized spiro-starburst-structures has been analysed by thermogravimetric analysis method.
Resumo:
The scope of this work is the fundamental growth, tailoring and characterization of self-organized indium arsenide quantum dots (QDs) and their exploitation as active region for diode lasers emitting in the 1.55 µm range. This wavelength regime is especially interesting for long-haul telecommunications as optical fibers made from silica glass have the lowest optical absorption. Molecular Beam Epitaxy is utilized as fabrication technique for the quantum dots and laser structures. The results presented in this thesis depict the first experimental work for which this reactor was used at the University of Kassel. Most research in the field of self-organized quantum dots has been conducted in the InAs/GaAs material system. It can be seen as the model system of self-organized quantum dots, but is not suitable for the targeted emission wavelength. Light emission from this system at 1.55 µm is hard to accomplish. To stay as close as possible to existing processing technology, the In(AlGa)As/InP (100) material system is deployed. Depending on the epitaxial growth technique and growth parameters this system has the drawback of producing a wide range of nano species besides quantum dots. Best known are the elongated quantum dashes (QDash). Such structures are preferentially formed, if InAs is deposited on InP. This is related to the low lattice-mismatch of 3.2 %, which is less than half of the value in the InAs/GaAs system. The task of creating round-shaped and uniform QDs is rendered more complex considering exchange effects of arsenic and phosphorus as well as anisotropic effects on the surface that do not need to be dealt with in the InAs/GaAs case. While QDash structures haven been studied fundamentally as well as in laser structures, they do not represent the theoretical ideal case of a zero-dimensional material. Creating round-shaped quantum dots on the InP(100) substrate remains a challenging task. Details of the self-organization process are still unknown and the formation of the QDs is not fully understood yet. In the course of the experimental work a novel growth concept was discovered and analyzed that eases the fabrication of QDs. It is based on different crystal growth and ad-atom diffusion processes under supply of different modifications of the arsenic atmosphere in the MBE reactor. The reactor is equipped with special valved cracking effusion cells for arsenic and phosphorus. It represents an all-solid source configuration that does not rely on toxic gas supply. The cracking effusion cell are able to create different species of arsenic and phosphorus. This constitutes the basis of the growth concept. With this method round-shaped QD ensembles with superior optical properties and record-low photoluminescence linewidth were achieved. By systematically varying the growth parameters and working out a detailed analysis of the experimental data a range of parameter values, for which the formation of QDs is favored, was found. A qualitative explanation of the formation characteristics based on the surface migration of In ad-atoms is developed. Such tailored QDs are finally implemented as active region in a self-designed diode laser structure. A basic characterization of the static and temperature-dependent properties was carried out. The QD lasers exceed a reference quantum well laser in terms of inversion conditions and temperature-dependent characteristics. Pulsed output powers of several hundred milli watt were measured at room temperature. In particular, the lasers feature a high modal gain that even allowed cw-emission at room temperature of a processed ridge wave guide device as short as 340 µm with output powers of 17 mW. Modulation experiments performed at the Israel Institute of Technology (Technion) showed a complex behavior of the QDs in the laser cavity. Despite the fact that the laser structure is not fully optimized for a high-speed device, data transmission capabilities of 15 Gb/s combined with low noise were achieved. To the best of the author`s knowledge, this renders the lasers the fastest QD devices operating at 1.55 µm. The thesis starts with an introductory chapter that pronounces the advantages of optical fiber communication in general. Chapter 2 will introduce the fundamental knowledge that is necessary to understand the importance of the active region`s dimensions for the performance of a diode laser. The novel growth concept and its experimental analysis are presented in chapter 3. Chapter 4 finally contains the work on diode lasers.