13 resultados para Northeastern States
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Double photoionization of argon was studied by photon induced fluorescence spectroscopy (PIFS). Cross sections for the double photoionization into the {3s3p^5} {^1P}, {^3P} states of Ar^{+ +} are presented for exciting photon energies between threshold and 120 eV. In the threshold range the energy dependencies of these cross sections were determined for the first time. Singlet and triplet states are populated with comparable probabilities at equal excess energies, in contrast to predictions of the extended Wannier theory. At hv = 100eV the spin-or-bit splitting of the 3s3p^5 ^3P state was resolved, and a cross section for the production of Ar^{+ +} {3s^0}{3p^6 } {^1S_0} was determined for the first time.
Resumo:
The transition from van der Waals to covalent bonding, which is expected to occur in divalent-metal clusters with increasing cluster size, is discussed. We propose a model which takes into account, within the same electronic theory, the three main competing contributions, namely the kinetic energy of the electrons, the Coulomb interactions between electrons, and the s \gdw p intraatomic transitions responsible for van der Waals like bonding. The model is solved by taking into account electron correlations using a generalized Gutzwiller approximation (slave boson method). The occurrence of electron localization is studied as a function of the interaction parameters and cluster size.
Resumo:
Perturbation theory in the lowest non-vanishing order in interelectron interaction has been applied to the theoretical investigation of double-ionization decays of resonantly excited single-electron states. The formulae for the transition probabilities were derived in the LS coupling scheme, and the orbital angular momentum and spin selection rules were obtained. In addition to the formulae, which are exact in this order, three approximate expressions, which correspond to illustrative model mechanisms of the transition, were derived as limiting cases of the exact ones. Numerical results were obtained for the decay of the resonantly excited Kr 1 3d^{-1}5p[^1P] state which demonstrated quite clearly the important role of the interelectron interaction in double-ionization processes. On the other hand, the results obtained show that low-energy electrons can appear in the photoelectron spectrum below the ionization threshold of the 3d shell. As a function of the photon frequency, the yield of these low-energy electrons is strongly amplified by the resonant transition of the 3d electron to 5p (or to other discrete levels), acting as an intermediate state, when the photon frequency approaches that of the transition.
Resumo:
The photoionization cross sections for the production of the Kr II 4s state and Kr II satellite states were studied in the 4s ionization threshold region. The interference of direct photoionization and ionization through the autoionization decay of doubly-excited states was considered. In the calculations of doubly-excited state energies, performed by a configuration interaction technique, the 4p spin-orbit interaction and the (Kr II core)-(excited electron) Coulomb interaction were included. The theoretical cross sections are in many cases in good agreement with the measured values. Strong resonant features in the satellite spectra with threshold energies greater than 30 eV are predicted.
Resumo:
Relativistic multi-configuration Dirac Fock (MCDF) wavefunctions coupled to good angular momentum J have been calculated for low lying states of Ba I and Ba II. These wavefunctions are compared with semiempirical ones derived from experimental atomic energy levels. It is found that significantly better agreement is obtained when close configurations are included in the MCDF wavefunctions. Calculations of the electronic part of the field isotope shift lead to very good agreement with electronic factors derived from experimental data. Furthermore, the slopes of the lines in a King plot analysis of many of the optical lines are predicted accurately by these calculations. However, the MCDF wavefunctions seem not to be of sufficient accuracy to give agreement with the experimental magnetic dipole and electric quadrupole hyperfine structure constants.
Resumo:
In continuation of our previous work on doubly-excited ions with three and four electrons we present the first results on optical transitions in the term system of doubly-excited ions with five electrons. Transitions between such sextet states were identified in beam-foil spectra of the ions nitrogen, oxygen and fluorine. Assignments were first established by comparison with Multi-Configuration Dirac-Fock calculations. Later assignments were aided by Multi-Configuration Hartree-Fock calculations (see the contribution by G. Miecznik et al. in this issue). Decay curves were recorded for all six candidate lines. The lifetime results are compared to theoretical values which confirm most of the assignments qualitatively.
Resumo:
The basic thermodynamic functions, the entropy, free energy, and enthalpy, for element 105 (hahnium) in electronic configurations d^3 s^2, d^3 sp, and d^4s^1 and for its +5 ionized state (5f^14) have been calculated as a function of temperature. The data are based on the results of the calculations of the corresponding electronic states of element 105 using the multiconfiguration Dirac-Fock method.
Resumo:
Results of relativistic multiconfiguration Dirac-Fock calculations with an extended nucleus are used to analyze the volume isotope shifts of the resonance transitions in the group-IIa and -IIb elements as well as in Yb. This is done together with a review of the isotope shift theory, including a critical evaluation and comparison of the semiempirical calculation of volume isotope shifts commonly used today. Electronic factors F_i, proportional to differences of electronic densities over the nuclear volume, are discussed within various approximations and compared with experimental results.
Resumo:
Relativistic multi-configuration Dirac-Fock wavefunctions, coupled to good angular momentum J, have been calculated for low lying states of Ba I and Ba II. The resulting electronic factors show good agreement with data derived from recent high-resolution laser spectroscopy experiments and results from a comparison of muonic and optical data.
Resumo:
Following an earlier observation in F VI we identified the line pair 1s2s2p^2 {^5P}-1s2s2p3d {^5P^0} , {^5D^0} for the elements N, O, Mg, and tentatively for A1 and Si in beam-foil spectra. Assignment was established by comparison with Multi-Configuration Dirac-Fock calculations along the isoelectronic sequence. Using this method we also identified some quartet lines of lithium-like ions with Z > 10.
Resumo:
Femtosecond time-resolved techniques with KETOF (kinetic energy time-of-flight) detection in a molecular beam are developed for studies of the vectorial dynamics of transition states. Application to the dissociation reaction of IHgI is presented. For this system, the complex [I---Hg---I](++)* is unstable and, through the symmetric and asymmetric stretch motions, yields different product fragments: [I---Hg---I](++)* -> HgI(X^2/sigma^+) + I(^2P_3/2) [or I*(^2P_l/2)] (1a); [I---Hg---I](++)* -> Hg(^1S_0) + I(^2P_3/2) + I(^2P_3/2) [or I* (^2P_1/2)] (1 b). These two channels, (1a) and (1b), lead to different kinetic energy distributions in the products. It is shown that the motion of the wave packet in the transition-state region can be observed by MPI mass detection; the transient time ranges from 120 to 300 fs depending on the available energy. With polarized pulses, the vectorial properties (transition moments alignment relative to recoil direction) are studied for fragment separations on the femtosecond time scale. The results indicate the nature of the structure (symmetry properties) and the correlation to final products. For 311-nm excitation, no evidence of crossing between the I and I* potentials is found at the internuclear separations studied. (Results for 287-nm excitation are also presented.) Molecular dynamics simulations and studies by laser-induced fluorescence support these findings.
Resumo:
In drawing a conclusion for this study, care must be taken in generalizing findings since the population of students and teachers investigated were limited to certain levels in the different schools and countries. This study recognized some complexity of the factors underlying the status of school gardening instruction and activities in Germany, Nigeria and the U.S. as inadequate time for decision-making in the process of gardening, motivation of teachers and students. This was seen as the major impediments that influenced the status of gardening in the three countries. However, these factors were considered to have affected students’ mode of participation in the school gardening projects. This research finding suggests that the promotion and encouragement of students in gardening activities will promote vegetable production and increasing the numbers of practical farmers. Gardening has the potential to create opportunities for learning in an environment where children are able to experience nature first hand and to use the shared experience for communication (Bowker & Tearle, 2007). Therefore, the need for students to be encouraged to participate in gardening programs as the benefit will not only reduce the rate of obesity currently spreading among youths, but will contribute to the improve knowledge on science subjects. To build a network between community, parents and schools, a parent’s community approach should be used as the curriculum. The community approach will tighten the link between schools; community members, parents, teachers and students. This will help facilitate a better gardening projects implementation. Through a close collaboration, teachers and students will be able to identify issues affecting communities and undertake action learning in collaboration with community organizations to assess community needs and plan the implementation strategies as parents are part of the community. The sense of efficacy is a central factor in motivational and learning processes that govern educational improvement, standard and performance on complex tasks of both teachers and students. Dedication and willingness are the major stimulator and achievement of a project. Through a stimulator and provision of incentives and facilities, schools can achieve the best in project development. Teachers and principals should be aware that students are the lever for achieving the set goals in schools. Failure to understand what students need will result in achieving zero result. Therefore, it is advised that schools focus more on how to lure students to work through proper collaboration with the parents and community members. Principals and teachers should identify areas where students need to be corrected, helping them to correct the problem will enable them be committed in the schools’ programs.
Resumo:
Rice straw is used in Northeastern Thailand as an alternative to organic fertilizer for crop production. This enables farmers to reduce the use of chemical fertilizers which leads to a decrease in production costs. In spite of the beneficial effects in agricultural production, rice straw compost cannot be produced in large amounts because the burning of rice straws is a common farming practice. The decisions of farmers who use rice straw compost have been investigated by interviewing 120 households belonging to the members of an organic fertilizer user group using a household questionnaire. The study was conducted to evaluate the factors that affect the use of rice straw compost in Khon Kaen Province in Northeastern Thailand. Results of the logit model showed that the farmers’ education, number of rice straw compost trainings in which the farmer participated, lack of knowledge about technology, insufficient labour and difficulty in making rice straw compost had a significant impact on the farmer’s decision to use rice straw compost. Difficulty in making rice straw compost appeared to be the root cause because the procedure of making rice straw compost is complex and labour intensive. Repeated trainings thus, will have a positive and significant influence on farmers’ adoption of the technology. Training provides more knowledge and will presumably change the perception of the farmers towards new technologies and the awareness of positive effects of rice straw compost utilization.