3 resultados para Nicole Poret
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The present study investigates the systematics and evolution of the Neotropical genus Deuterocohnia Mez (Bromeliaceae). It provides a comprehensive taxonomic revision as well as phylogenetic analyses based on chloroplast and nuclear DNA sequences and presents a hypothesis on the evolution of the genus. A broad morphological, anatomical, biogeographical and ecological overview of the genus is given in the first part of the study. For morphological character assessment more than 700 herbarium specimens from 39 herbaria as well as living plant material in the field and in the living collections of botanical gardens were carefully examined. The arid habitats, in which the species of Deuterocohnia grow, are reflected by the morphological and anatomical characters of the species. Important characters for species delimitation were identified, like the length of the inflorescence, the branching order, the density of flowers on partial inflorescences, the relation of the length of the primary bracts to that of the partial inflorescence, the sizes of floral bracts, sepals and petals, flower colour, the presence or absence of a pedicel, the curvature of the stamina and the petals during anthesis. After scrutinizing the nomenclatural history of the taxa belonging to Deuterocohnia – including the 1992 syonymized genus Abromeitiella – 17 species, 4 subspecies and 4 varieties are accepted in the present revision. Taxonomic changes were made in the following cases: (I) New combinations: A. abstrusa (A. Cast.) N. Schütz is re-established – as defined by Castellanos (1931) – and transfered to D. abstrusa; D. brevifolia (Griseb.) M.A. Spencer & L.B. Sm. includes accessions of the former D. lorentziana (Mez) M.A. Spencer & L.B. Sm., which are not assigned to D. abstrusa; D. bracteosa W. Till is synonymized to D. strobilifera Mez; D. meziana Kuntze ex Mez var. carmineo-viridiflora Rauh is classified as a subspecies of D. meziana (ssp. carmineo-viridiflora (Rauh) N. Schütz); D. pedicellata W. Till is classified as a subspecies of D. meziana (ssp. pedicellata (W. Till) N. Schütz); D. scapigera (Rauh & L. Hrom.) M.A. Spencer & L.B. Sm ssp. sanctae-crucis R. Vásquez & Ibisch is classified as a species (D. sanctae-crucis (R. Vásquez & Ibisch) N. Schütz); (II) New taxa: a new subspecies of D. meziana Kuntze ex Mez is established; a new variety of D. scapigera is established; (the new taxa will be validly published elsewhere); (III) New type: an epitype for D. longipetala was chosen. All other species were kept according to Spencer and Smith (1992) or – in the case of more recently described species – according to the protologue. Beside the nomenclatural notes and the detailed descriptions, information on distribution, habitat and ecology, etymology and taxonomic delimitation is provided for the genus and for each of its species. An key was constructed for the identification of currently accepted species, subspecies and varieties. The key is based on easily detectable morphological characters. The former synonymization of the genus Abromeitiella into Deuterocohnia (Spencer and Smith 1992) is re-evalutated in the present study. Morphological as well as molecular investigations revealed Deuterocohnia incl. Abromeitiella as being monophyletic, with some indications that a monophyletic Abromeitiella lineage arose from within Deuterocohnia. Thus the union of both genera is confirmed. The second part of the present thesis describes and discusses the molecular phylogenies and networks. Molecular analyses of three chloroplast intergenic spacers (rpl32-trnL, rps16-trnK, trnS-ycf3) were conducted with a sample set of 119 taxa. This set included 103 Deuterocohnia accessions from all 17 described species of the genus and 16 outgroup taxa from the remainder of Pitcairnioideae s.str. (Dyckia (8 sp.), Encholirium (2 sp.), Fosterella (4 sp.) and Pitcairnia (2 sp.)). With its high sampling density, the present investigation by far represents the most comprehensive molecular study of Deuterocohnia up till now. All data sets were analyzed separately as well as in combination, and various optimality criteria for phylogenetic tree construction were applied (Maximum Parsimony, Maximum Likelihood, Bayesian inferences and the distance method Neighbour Joining). Congruent topologies were generally obtained with different algorithms and optimality criteria, but individual clades received different degrees of statistical support in some analyses. The rps16-trnK locus was the most informative among the three spacer regions examined. The results of the chloroplast DNA analyses revealed a highly supported paraphyly of Deuterocohnia. Thus, the cpDNA trees divide the genus into two subclades (A and B), of which Deuterocohnia subclade B is sister to the included Dyckia and Encholirium accessions, and both together are sister to Deuterocohnia subclade A. To further examine the relationship between Deuterocohnia and Dyckia/Encholirium at the generic level, two nuclear low copy markers (PRK exon2-5 and PHYC exon1) were analysed with a reduced taxon set. This set included 22 Deuterocohnia accessions (including members of both cpDNA subclades), 2 Dyckia, 2 Encholirium and 2 Fosterella species. Phylogenetic trees were constructed as described above, and for comparison the same reduced taxon set was also analysed at the three cpDNA data loci. In contrast to the cpDNA results, the nuclear DNA data strongly supported the monophyly of Deuterocohnia, which takes a sister position to a clade of Dyckia and Encholirium samples. As morphology as well as nuclear DNA data generated in the present study and in a former AFLP analysis (Horres 2003) all corroborate the monophyly of Deuterocohnia, the apparent paraphyly displayed in cpDNA analyses is interpreted to be the consequence of a chloroplast capture event. This involves the introgression of the chloroplast genome from the common ancestor of the Dyckia/ Encholirium lineage into the ancestor of Deuterocohnia subclade B species. The chloroplast haplotypes are not species-specific in Deuterocohnia. Thus, one haplotype was sometimes shared by several species, where the same species may harbour different haplotypes. The arrangement of haplotypes followed geographical patterns rather than taxonomic boundaries, which may indicate some residual gene flow among populations from different Deuteroccohnia species. Phenotypic species coherence on the background of ongoing gene flow may then be maintained by sets of co-adapted alleles, as was suggested by the porous genome concept (Wu 2001, Palma-Silva et al. 2011). The results of the present study suggest the following scenario for the evolution of Deuterocohnia and its species. Deuterocohnia longipetala may be envisaged as a representative of the ancestral state within the genus. This is supported by (1) the wide distribution of this species; (2) the overlap in distribution area with species of Dyckia; (3) the laxly flowered inflorescences, which are also typical for Dyckia; (4) the yellow petals with a greenish tip, present in most other Deuterocohnia species. The following six extant lineages within Deuterocohnia might have independently been derived from this ancestral state with a few changes each: (I) D. meziana, D. brevispicata and D. seramisiana (Bolivia, lowland to montane areas, mostly reddish-greenish coloured, very laxly to very densely flowered); (II) D. strobilifera (Bolivia, high Andean mountains, yellow flowers, densely flowered); (III) D. glandulosa (Bolivia, montane areas, yellow-greenish flowers, densely flowered); (IV) D. haumanii, D. schreiteri, D. digitata, and D. chrysantha (Argentina, Chile, E Andean mountains and Atacama desert, yellow-greenish flowers, densely flowered); (V) D. recurvipetala (Argentina, foothills of the Andes, recurved yellow flowers, laxly flowered); (VI) D. gableana, D. scapigera, D. sanctae-crucis, D. abstrusa, D. brevifolia, D. lotteae (former Abromeitiella species, Bolivia, Argentina, higher Andean mountains, greenish-yellow flowers, inflorescence usually simple). Originating from the lower montane Andean regions, at least four lineages of the genus (I, II, IV, VI) adapted in part to higher altitudes by developing densely flowered partial inflorescences, shorter flowers and – in at least three lineages (II, IV, VI) – smaller rosettes, whereas species spreading into the lowlands (I, V) developed larger plants, laxly flowered, amply branched inflorescences and in part larger flowers (I).
Resumo:
Diese Arbeit formuliert Anforderungen an die SUP, die integriert ist in die HWRMP. Mit der SUP und der HWRMP sind neue Instrumente der Umweltprüfung und der Hochwasserschutzplanung eingeführt. In der empirischen Studie wird aufgezeigt, welche Beiträge die SUP leistet. Inhalt, angewendete Methoden und Beteiligungsprozesse sind wesentilch für nachhaltige, akzeptierte Planungen auf abstrakter Planungsebene.
Resumo:
Die Wissenschaft weist im Zuge der Entwicklung von der Industrie- zu einer Wissensgesellschaft einschneidende Veränderungen in der Wissensordnung auf, welche sich bis hin zu einem zunehmenden Verlust der wissenschaftlichen Selbststeuerungsmechanismen bemerkbar machen und einen veränderten Umgang mit dem generierten Wissensschatz erfordern. Nicht nur Änderungen in der Wissensordnung und -produktion stellen die Psychoanalyse vor neue Herausforderungen: In den letzten Jahrzehnten geriet sie als Wissenschaft und Behandlungsverfahren zunehmend in die Kritik und reagierte mit einer konstruktiven Diskussion um ein dem Forschungsgegenstand – die Untersuchung unbewusster Prozesse und Fantasien – adäquates psychoanalytisches Forschungsverständnis. Die Auseinandersetzung mit Forderungen gesellschaftlicher Geldgeber, politischer Vertreter und Interessensgruppen wie auch der wissenschaftlichen Community stellt die Psychoanalyse vor besondere Herausforderungen. Um wissenschaftsexternen wie -internen Gütekriterien zu genügen, ist häufig ein hoher personeller, materieller, finanzieller, methodischer wie organisatorischer Aufwand unabdingbar, wie das Beispiel des psychoanalytischen Forschungsinstitutes Sigmund-Freud-Institut zeigt. Der steigende Aufwand schlägt sich in einer zunehmenden Komplexität des Forschungsprozesses nieder, die unter anderem in den vielschichtigen Fragestellungen und Zielsetzungen, dem vermehrt interdisziplinären, vernetzten Charakter, dem Umgang mit dem umfangreichen, hochspezialisierten Wissen, der Methodenvielfalt, etc. begründet liegt. Um jener Komplexität des Forschungsprozesses gerecht zu werden, ist es zunehmend erforderlich, Wege des Wissensmanagement zu beschreiten. Tools wie z. B. Mapping-Verfahren stellen unterstützende Werkzeuge des Wissensmanagements dar, um den Herausforderungen des Forschungsprozesses zu begegnen. In der vorliegenden Arbeit werden zunächst die veränderten Forschungsbedingungen und ihre Auswirkungen auf die Komplexität des Forschungsprozesses - insbesondere auch des psychoanalytischen Forschungsprozesses - reflektiert. Die mit der wachsenden Komplexität einhergehenden Schwierigkeiten und Herausforderungen werden am Beispiel eines interdisziplinär ausgerichteten EU-Forschungsprojektes näher illustriert. Um dieser wachsenden Komplexität psychoanalytischer Forschung erfolgreich zu begegnen, wurden in verschiedenen Forschungsprojekten am Sigmund-Freud-Institut Wissensmanagement-Maßnahmen ergriffen. In der vorliegenden Arbeit wird daher in einem zweiten Teil zunächst auf theoretische Aspekte des Wissensmanagements eingegangen, die die Grundlage der eingesetzten Wissensmanagement-Instrumente bildeten. Dabei spielen insbesondere psychologische Aspekte des Wissensmanagements eine zentrale Rolle. Zudem werden die konkreten Wissensmanagement-Tools vorgestellt, die in den verschiedenen Forschungsprojekten zum Einsatz kamen, um der wachsenden Komplexität psychoanalytischer Forschung zu begegnen. Abschließend werden die Hauptthesen der vorliegenden Arbeit noch einmal reflektiert und die geschilderten Techniken des Wissensmanagements im Hinblick auf ihre Vor- und Nachteile kritisch diskutiert.