3 resultados para Neotropical Tree

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigates the systematics and evolution of the Neotropical genus Deuterocohnia Mez (Bromeliaceae). It provides a comprehensive taxonomic revision as well as phylogenetic analyses based on chloroplast and nuclear DNA sequences and presents a hypothesis on the evolution of the genus. A broad morphological, anatomical, biogeographical and ecological overview of the genus is given in the first part of the study. For morphological character assessment more than 700 herbarium specimens from 39 herbaria as well as living plant material in the field and in the living collections of botanical gardens were carefully examined. The arid habitats, in which the species of Deuterocohnia grow, are reflected by the morphological and anatomical characters of the species. Important characters for species delimitation were identified, like the length of the inflorescence, the branching order, the density of flowers on partial inflorescences, the relation of the length of the primary bracts to that of the partial inflorescence, the sizes of floral bracts, sepals and petals, flower colour, the presence or absence of a pedicel, the curvature of the stamina and the petals during anthesis. After scrutinizing the nomenclatural history of the taxa belonging to Deuterocohnia – including the 1992 syonymized genus Abromeitiella – 17 species, 4 subspecies and 4 varieties are accepted in the present revision. Taxonomic changes were made in the following cases: (I) New combinations: A. abstrusa (A. Cast.) N. Schütz is re-established – as defined by Castellanos (1931) – and transfered to D. abstrusa; D. brevifolia (Griseb.) M.A. Spencer & L.B. Sm. includes accessions of the former D. lorentziana (Mez) M.A. Spencer & L.B. Sm., which are not assigned to D. abstrusa; D. bracteosa W. Till is synonymized to D. strobilifera Mez; D. meziana Kuntze ex Mez var. carmineo-viridiflora Rauh is classified as a subspecies of D. meziana (ssp. carmineo-viridiflora (Rauh) N. Schütz); D. pedicellata W. Till is classified as a subspecies of D. meziana (ssp. pedicellata (W. Till) N. Schütz); D. scapigera (Rauh & L. Hrom.) M.A. Spencer & L.B. Sm ssp. sanctae-crucis R. Vásquez & Ibisch is classified as a species (D. sanctae-crucis (R. Vásquez & Ibisch) N. Schütz); (II) New taxa: a new subspecies of D. meziana Kuntze ex Mez is established; a new variety of D. scapigera is established; (the new taxa will be validly published elsewhere); (III) New type: an epitype for D. longipetala was chosen. All other species were kept according to Spencer and Smith (1992) or – in the case of more recently described species – according to the protologue. Beside the nomenclatural notes and the detailed descriptions, information on distribution, habitat and ecology, etymology and taxonomic delimitation is provided for the genus and for each of its species. An key was constructed for the identification of currently accepted species, subspecies and varieties. The key is based on easily detectable morphological characters. The former synonymization of the genus Abromeitiella into Deuterocohnia (Spencer and Smith 1992) is re-evalutated in the present study. Morphological as well as molecular investigations revealed Deuterocohnia incl. Abromeitiella as being monophyletic, with some indications that a monophyletic Abromeitiella lineage arose from within Deuterocohnia. Thus the union of both genera is confirmed. The second part of the present thesis describes and discusses the molecular phylogenies and networks. Molecular analyses of three chloroplast intergenic spacers (rpl32-trnL, rps16-trnK, trnS-ycf3) were conducted with a sample set of 119 taxa. This set included 103 Deuterocohnia accessions from all 17 described species of the genus and 16 outgroup taxa from the remainder of Pitcairnioideae s.str. (Dyckia (8 sp.), Encholirium (2 sp.), Fosterella (4 sp.) and Pitcairnia (2 sp.)). With its high sampling density, the present investigation by far represents the most comprehensive molecular study of Deuterocohnia up till now. All data sets were analyzed separately as well as in combination, and various optimality criteria for phylogenetic tree construction were applied (Maximum Parsimony, Maximum Likelihood, Bayesian inferences and the distance method Neighbour Joining). Congruent topologies were generally obtained with different algorithms and optimality criteria, but individual clades received different degrees of statistical support in some analyses. The rps16-trnK locus was the most informative among the three spacer regions examined. The results of the chloroplast DNA analyses revealed a highly supported paraphyly of Deuterocohnia. Thus, the cpDNA trees divide the genus into two subclades (A and B), of which Deuterocohnia subclade B is sister to the included Dyckia and Encholirium accessions, and both together are sister to Deuterocohnia subclade A. To further examine the relationship between Deuterocohnia and Dyckia/Encholirium at the generic level, two nuclear low copy markers (PRK exon2-5 and PHYC exon1) were analysed with a reduced taxon set. This set included 22 Deuterocohnia accessions (including members of both cpDNA subclades), 2 Dyckia, 2 Encholirium and 2 Fosterella species. Phylogenetic trees were constructed as described above, and for comparison the same reduced taxon set was also analysed at the three cpDNA data loci. In contrast to the cpDNA results, the nuclear DNA data strongly supported the monophyly of Deuterocohnia, which takes a sister position to a clade of Dyckia and Encholirium samples. As morphology as well as nuclear DNA data generated in the present study and in a former AFLP analysis (Horres 2003) all corroborate the monophyly of Deuterocohnia, the apparent paraphyly displayed in cpDNA analyses is interpreted to be the consequence of a chloroplast capture event. This involves the introgression of the chloroplast genome from the common ancestor of the Dyckia/ Encholirium lineage into the ancestor of Deuterocohnia subclade B species. The chloroplast haplotypes are not species-specific in Deuterocohnia. Thus, one haplotype was sometimes shared by several species, where the same species may harbour different haplotypes. The arrangement of haplotypes followed geographical patterns rather than taxonomic boundaries, which may indicate some residual gene flow among populations from different Deuteroccohnia species. Phenotypic species coherence on the background of ongoing gene flow may then be maintained by sets of co-adapted alleles, as was suggested by the porous genome concept (Wu 2001, Palma-Silva et al. 2011). The results of the present study suggest the following scenario for the evolution of Deuterocohnia and its species. Deuterocohnia longipetala may be envisaged as a representative of the ancestral state within the genus. This is supported by (1) the wide distribution of this species; (2) the overlap in distribution area with species of Dyckia; (3) the laxly flowered inflorescences, which are also typical for Dyckia; (4) the yellow petals with a greenish tip, present in most other Deuterocohnia species. The following six extant lineages within Deuterocohnia might have independently been derived from this ancestral state with a few changes each: (I) D. meziana, D. brevispicata and D. seramisiana (Bolivia, lowland to montane areas, mostly reddish-greenish coloured, very laxly to very densely flowered); (II) D. strobilifera (Bolivia, high Andean mountains, yellow flowers, densely flowered); (III) D. glandulosa (Bolivia, montane areas, yellow-greenish flowers, densely flowered); (IV) D. haumanii, D. schreiteri, D. digitata, and D. chrysantha (Argentina, Chile, E Andean mountains and Atacama desert, yellow-greenish flowers, densely flowered); (V) D. recurvipetala (Argentina, foothills of the Andes, recurved yellow flowers, laxly flowered); (VI) D. gableana, D. scapigera, D. sanctae-crucis, D. abstrusa, D. brevifolia, D. lotteae (former Abromeitiella species, Bolivia, Argentina, higher Andean mountains, greenish-yellow flowers, inflorescence usually simple). Originating from the lower montane Andean regions, at least four lineages of the genus (I, II, IV, VI) adapted in part to higher altitudes by developing densely flowered partial inflorescences, shorter flowers and – in at least three lineages (II, IV, VI) – smaller rosettes, whereas species spreading into the lowlands (I, V) developed larger plants, laxly flowered, amply branched inflorescences and in part larger flowers (I).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moringa oleifera is becoming increasingly popular as an industrial crop due to its multitude of useful attributes as water purifier, nutritional supplement and biofuel feedstock. Given its tolerance to sub-optimal growing conditions, most of the current and anticipated cultivation areas are in medium to low rainfall areas. This study aimed to assess the effect of various irrigation levels on floral initiation, flowering and fruit set. Three treatments namely, a 900 mm (900IT), 600 mm (600IT) and 300 mm (300IT) per annum irrigation treatment were administered through drip irrigation, simulating three total annual rainfall amounts. Individual inflorescences from each treatment were tagged during floral initiation and monitored throughout until fruit set. Flower bud initiation was highest at the 300IT and lowest at the 900IT for two consecutive growing seasons. Fruit set on the other hand, decreased with the decrease in irrigation treatment. Floral abortion, reduced pollen viability as well as moisture stress in the style were contributing factors to the reduction in fruiting/yield observed at the 300IT. Moderate water stress prior to floral initiation could stimulate flower initiation, however, this should be followed by sufficient irrigation to ensure good pollination, fruit set and yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for biomass for bioenergy has increased rapidly in industrialized countries in the recent years. Biogenic energy carriers are known to reduce CO2 emissions. However, the resource-inefficient production of biomass often caused negative impacts on the environment, e.g. biodiversity losses, nitrate leaching, and erosion. The detrimental effects evolved mainly from annual crops. Therefore, the aim of modern bioenergy cropping systems is to combine yield stability and environmental benefits by the establishment of mixed-cropping systems. A particular emphasis is on perennial crops which are perceived as environmentally superior to annual crops. Agroforestry systems represent such mixed perennial cropping systems and consist of a mix of trees and arable crops or grassland within the same area of land. Agroforestry practices vary across the globe and alley cropping is a type of agroforestry system which is well adapted to the temperate zone, with a high degree of mechanization. Trees are planted in rows and crops are planted in the alleyways, which facilitates their management by machinery. This study was conducted to examine a young alley cropping system of willows and two grassland mixtures for bioenergy provision under temperate climate conditions. The first part of the thesis identified possible competition effects between willows and the two grassland mixtures. Since light seemed to be the factor most affecting the yield performance of the understory in temperate agroforestry systems, a biennial in situ artificial shade experiment was established over a separate clover-grass stand to quantify the effects of shade. Data to possible below- and aboveground interactions among willows and the two grassland mixtures and their effects on productivity, sward composition, and quality were monitored along a tree-grassland interface within the alleys. In the second part, productivity of the alley cropping system was examined on a triennial time frame and compared to separate grassland and willow stands as controls. Three different conversion technologies (combustion of hay, integrated generation of solid fuel and biogas from biomass, whole crop digestion) were applied to grassland biomass as feedstock and analyzed for its energetic potential. The energetic potential of willow wood chips was calculated by applying combustion as conversion technique. Net energy balances of separate grassland stands, agroforestry and pure willow stands evaluated their energy efficiency. Results of the biennial artificial shade experiment showed that severe shade (80 % light reduction) halved grassland productivity on average compared to a non-shaded control. White clover as heliophilous plant responded sensitively to limited radiation and its dry matter contribution in the sward decreased with increasing shade, whereas non-leguminous forbs (mainly segetal species) benefited. Changes in nutritive quality could not be confirmed by this experiment. Through the study on interactions within the alleys of the young agroforestry system it was possible to outline changes of incident light, soil temperature and sward composition of clover-grass along the tree-grassland interface. Nearly no effects of trees on precipitation, soil moisture and understory productivity occurred along the interface during the biennial experiment. Considering the results of the productivity and the net energy yield alley cropping system had lower than pure grassland stands, irrespective of the grassland seed mixture or fertilization, but was higher than that for pure willow stands. The comparison of three different energetic conversion techniques for the grassland biomass showed highest net energy yields for hay combustion, whereas the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion performed similarly. However, due to the low fuel quality of hay, its direct combustion cannot be recommended as a viable conversion technique, whereas IFBB fuels were of a similar quality to wood chip from willow.