2 resultados para Nature conservation

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mit der Verwirklichung ,Ökologischer Netzwerke‘ werden Hoffnungen zum Stopp des Verlustes der biologischen Vielfalt verknüpft. Sowohl auf gesamteuropäischer Ebene (Pan-European Ecological Network - PEEN) als auch in den einzelnen Staaten entstehen Pläne zum Aufbau von Verbundsystemen. Im föderalen Deutschland werden kleinmaßstäbliche Biotopverbundplanungen auf Landesebene aufgestellt; zum nationalen Biotopverbund bestehen erste Konzepte. Die vorliegende Arbeit ist auf diese überörtlichen, strategisch vorbereitenden Planungsebenen ausgerichtet. Ziele des Verbunds sind der Erhalt von Populationen insbesondere der gefährdeten Arten sowie die Ermöglichung von Ausbreitung und Wanderung. Aufgrund fehlender Datengrundlagen zu den Arten und Populationen ist es nicht ohne weiteres möglich, die Konzepte und Modelle der Populationsökologie in die überörtlichen Planungsebenen zu übertragen. Gemäß der o.g. Zielstellungen sollte sich aber die Planung von Verbundsystemen an den Ansprüchen der auf Verbund angewiesenen Arten orientieren. Ziel der Arbeit war die Entwicklung einer praktikablen GIS-gestützten Planungshilfe zur größtmöglichen Integration ökologischen Wissens unter der Bedingung eingeschränkter Informationsverfügbarkeit. Als Grundlagen dazu werden in Übersichtsform zunächst die globalen, europäisch-internationalen und nationalen Rahmenbedingungen und Anforderungen bezüglich des Aufbaus von Verbundsystemen zusammengestellt. Hier sind die Strategien zum PEEN hervorzuheben, die eine Integration ökologischer Inhalte insbesondere durch die Berücksichtigung räumlich-funktionaler Beziehungen fordern. Eine umfassende Analyse der landesweiten Biotopverbundplanungen der BRD zeigte die teilweise erheblichen Unterschiede zwischen den Länderplanungen auf, die es aktuell nicht ermöglichen, ein schlüssiges nationales Konzept zusammenzufügen. Nicht alle Länder haben landesweite Biotopverbundplanungen und Landeskonzepte, bei denen dem geplanten Verbund die Ansprüche von Arten zugrunde gelegt werden, gibt es nur ansatzweise. Weiterhin wurde eine zielgerichtete Eignungsprüfung bestehender GIS-basierter Modelle und Konzepte zum Verbund unter Berücksichtigung der regelmäßig in Deutschland verfügbaren Datengrundlagen durchgeführt. Da keine integrativen regelorientierten Ansätze vorhanden waren, wurde der vektorbasierte Algorithmus HABITAT-NET entwickelt. Er arbeitet mit ,Anspruchstypen‘ hinsichtlich des Habitatverbunds, die stellvertretend für unterschiedliche ökologische Gruppen von (Ziel-) Arten mit terrestrischer Ausbreitung stehen. Kombiniert wird die Fähigkeit zur Ausbreitung mit einer Grobtypisierung der Biotopbindung. Die wichtigsten Grundlagendaten bilden die jeweiligen (potenziellen) Habitate von Arten eines Anspruchstyps sowie die umgebende Landnutzung. Bei der Bildung von ,Lebensraumnetzwerken‘ (Teil I) werden gestufte ,Funktions- und Verbindungsräume‘ generiert, die zu einem räumlichen System verknüpft sind. Anschließend kann die aktuelle Zerschneidung der Netzwerke durch Verkehrstrassen aufgezeigt werden, um darauf aufbauend prioritäre Abschnitte zur Wiedervernetzung zu ermitteln (Teil II). Begleitend wird das Konzept der unzerschnittenen Funktionsräume (UFR) entworfen, mit dem die Indikation von Habitatzerschneidung auf Landschaftsebene möglich ist. Diskutiert werden schließlich die Eignung der Ergebnisse als kleinmaßstäblicher Zielrahmen, Tests zur Validierung, Vergleiche mit Verbundplanungen und verschiedene Setzungen im GIS-Algorithmus. Erläuterungen zu den Einsatzmöglichkeiten erfolgen beispielsweise für die Bereiche Biotopverbund- und Landschaftsplanung, Raumordnung, Strategische Umweltprüfung, Verkehrswegeplanung, Unterstützung des Konzeptes der Lebensraumkorridore, Kohärenz im Schutzgebietssystem NATURA 2000 und Aufbau von Umweltinformationssystemen. Schließlich wird ein Rück- und Ausblick mit der Formulierung des weiteren Forschungsbedarfs verknüpft.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extensive grassland biomass for bioenergy production has long been subject of scientific research. The possibility of combining nature conservation goals with a profitable management while reducing competition with food production has created a strong interest in this topic. However, the botanical composition will play a key role for solid fuel quality of grassland biomass and will have effects on the combustion process by potentially causing corrosion, emission and slagging. On the other hand, botanical composition will affect anaerobic digestibility and thereby the biogas potential. In this thesis aboveground biomass from the Jena-Experiment plots was harvested in 2008 and 2009 and analysed for the most relevant chemical constituents effecting fuel quality and anaerobic digestibility. Regarding combustion, the following parameters were of main focus: higher heating value (HHV), gross energy yield (GE), ash content, ash softening temperature (AST), K, Ca, Mg, N, Cl and S content. For biogas production the following parameters were investigated: substrate specific methane yield (CH4 sub), area specific methane yield (CH4 area), crude fibre (CF), crude protein (CP), crude lipid (CL) and nitrogen-free extract (NfE). Furthermore, an improvement of the fuel quality was investigated through applying the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Through the specific setup of the Jena-Experiment it was possible to outline the changes of these parameters along two diversity gradients: (i) species richness (SR; 1 to 60 species) and (ii) functional group (grasses, legumes, small herbs and tall herbs) presence. This was a novel approach on investigating the bioenergy characteristic of extensive grassland biomass and gave detailed insight in the sward-composition¬ - bioenergy relations such as: (i) the most relevant SR effect was the increase of energy yield for both combustion (annual GE increased by 26% from SR8→16 and by 65% from SR8→60) and anaerobic digestion (annual CH4 area increased by 22% from SR8→16 and by 49% from SR8→60) through a strong interaction of SR with biomass yield; (ii) legumes play a key role for the utilization of grassland biomass for energy production as they increase the energy content of the substrate (HHV and CH4 sub) and the energy yield (GE and CH4 area); (iii) combustion is the conversion technique that will yield the highest energy output but requires an improvement of the solid fuel quality in order to reduce the risk of corrosion, emission and slagging related problems. This was achieved through applying the IFBB-procedure, with reductions in ash (by 23%), N (28%), K (85%), Cl (56%) and S (59%) and equal levels of concentrations along the SR gradient.