8 resultados para Nanowire Arrays
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Diese Arbeit beschäftigt sich mit der Herstellung und Anwendungen von periodischen Goldnanopartikel-Arrays (PPAs), die mit Hilfe von Nanosphären-Lithografie hergestellt wurden. In Abhängigkeit der verwendeten Nanosphären-Größe wurden dabei entweder kleine dreieckige Nanopartikel (NP) (bei Verwendung von Nanosphären mit einem Durchmesser von 330 nm) oder große dreieckige NPD sowie leicht gestreckte NP (bei Verwendung von Nanosphären mit einem Durchmesser von 1390 nm) hergestellt. Die Charakterisierung der PPAs erfolgte mit Hilfe von Rasterkraftmikroskopie, Rasterelektronenmikroskopie und optischer Spektroskopie. Die kleinen NP besitzen ein Achsverhältnis (AV) von 2,47 (Kantenlänge des NPs: (74+/-6) nm, Höhe: (30+/-4) nm. Die großen dreieckigen NP haben ein AV von 3 (Kantenlänge des NPs:(465+/-27) nm, Höhe: (1530+/-10) nm) und die leicht gestreckten NP (die aufgrund der Ausbildung von Doppelschichten ebenfalls auf der gleichen Probe erzeugt wurden) haben eine Länge von (364+/-16)nm, eine Breite von (150+/-20) nm und eine Höhe von (150+/-10)nm. Die optischen Eigenschaften dieser NP werden durch lokalisierte Oberflächenplasmon-Polariton Resonanzen (LPPRs) dominiert, d.h. von einem eingestrahlten elektromagnetischen Feld angeregte kollektive Schwingungen der Leitungsbandelektronen. In dieser Arbeit wurden drei signifikante Herausforderungen für Plasmonik-Anwendungen bearbeitet, welche die einzigartigen optischen Eigenschaften dieser NP ausnutzen. Erstens wurden Ergebnisse der selektiven und präzisen Größenmanipulation und damit einer Kontrolle der interpartikulären Abstände von den dreieckigen Goldnanopartikel mit Hilfe von ns-gepulstem Laserlicht präsentiert. Die verwendete Methode basiert hierbei auf der Größen- und Formabhängigkeit der LPPRs der NP. Zweitens wurde die sensorischen Fähigkeiten von Gold-NP ausgenutzt, um die Bildung von molekularen Drähten auf den PPAs durch schrittweise Zugabe von unterschiedlichen molekularen Spezies zu untersuchen. Hierbei wurde die Verschiebung der LSPPR in den optischen Spektren dazu ausgenutzt, die Bildung der Nanodrähte zu überwachen. Drittens wurden Experimente vorgestellt, die sich die lokale Feldverstärkung von NP zu nutze machen, um eine hochgeordnete Nanostrukturierung von Oberflächen mittels fs-gepulstem Laserlicht zu bewerkstelligen. Dabei zeigt sich, dass neben der verwendeten Fluenz die Polarisationsrichtung des eingestrahlten Laserlichts in Bezug zu der NP-Orientierung sowie die Größe der NP äußerst wichtige Parameter für die Nanostrukturierung darstellen. So konnten z.B. Nanolöcher erzeugt werden, die bei höheren Fluenzen zu Nanogräben und Nanokanälen zusammen wuchsen. Zusammengefasst lässt sich sagen, dass die in dieser Arbeit gewonnen Ergebnisse von enormer Wichtigkeit für weitere Anwendungen sind.
Resumo:
Optische Spektrometer sind bekannte Instrumente für viele Anwendungen in Life Sciences, Produktion und Technik aufgrund ihrer guten Selektivität und Sensitivität zusammen mit ihren berührungslosen Messverfahren. MEMS (engl. Micro-electro-mechanical system)-basierten Spektrometer werden als disruptive Technologie betrachtet, in der miniaturisierte Fabry-Pérot Filter als sehr attraktiv für die optische Kommunikation und 'Smart Personal Environments', einschließlich des medizinischen Anwendungen, zu nennen sind. Das Ziel dieser Arbeit ist, durchstimmbare Filter-Arrays mit kostengünstigen Technologien herzustellen. Materialien und technologische Prozesse, die für die Herstellung der Filter-Arrays benötigt werden, wurden untersucht. Im Rahmen dieser Arbeit, wurden durchstimmbare Fabry Pérot Filter-Arrays für den sichtbaren Spektralbereich untersucht, die als Nano-Spektrometer eingesetzt werden. Darüber hinaus wurde ein Modell der numerischen Simulation vorgestellt, die zur Ermittlung eines optimales geometrisches Designs verwendet wurde, wobei sich das Hauptaugenmerk der Untersuchung auf die Durchbiegung der Filtermembranen aufgrund der mechanischen Verspannung der Schichten richtet. Die geometrische Form und Größe der Filtermembranen zusammen mit der Verbindungsbrücken sind von entscheidender Bedeutung, da sie die Durchbiegung beeinflussen. Lange und schmale Verbindungsbrücken führen zur stärkeren Durchbiegung der Filtermembranen. Dieser Effekt wurde auch bei der Vergrößerung der Durchmesser der Membran beobachtet. Die Filter mit spiralige (engl. curl-bent) Verbindungsbrücken führten zu geringerer Deformation als die mit geraden oder gebogenen Verbindungsbrücken. Durchstimmbare Si3N4/SiO2 DBR-basierende Filter-Arrays wurden erfolgreich hergestellt. Eine Untersuchung über die UV-NIL Polymere, die als Opferschicht und Haltepfosten-Material der Filter verwendet wurden, wurde durchgeführt. Die Polymere sind kompatibel zu dem PECVD-Verfahren, das für die Spiegel-Herstellung verwendet wird. Die laterale Strukturierung der DBR-Spiegel mittels des RIE (engl. Reactive Ion Etching)-Prozesses sowie der Unterätz-Prozess im Sauerstoffplasma zur Entfernung der Opferschicht und zum Erreichen der Luftspalt-Kavität, wurden durchgeführt. Durchstimmbare Filter-Arrays zeigten einen Abstimmbereich von 70 nm bei angelegten Spannungen von weniger als 20 V. Optimierungen bei der Strukturierung von TiO2/SiO2 DBR-basierenden Filtern konnte erzielt werden. Mit der CCP (engl. Capacitively Coupling Plasma)-RIE, wurde eine Ätzrate von 20 nm/min erreicht, wobei Fotolack als Ätzmaske diente. Mit der ICP (engl. Inductively Coupling Plasma)-RIE, wurden die Ätzrate von mehr als 60 nm/min mit einem Verhältniss der Ar/SF6 Gasflüssen von 10/10 sccm und Fotolack als Ätzmasken erzielt. Eine Ätzrate von 80 bis 90 nm/min wurde erreicht, hier diente ITO als Ätzmaske. Ausgezeichnete geätzte Profile wurden durch den Ätzprozess unter Verwendung von 500 W ICP/300 W RF-Leistung und Ar/SF6 Gasflüsse von 20/10 sccm erreicht. Die Ergebnisse dieser Arbeit ermöglichen die Realisierung eines breiten Spektralbereichs der Filter-Arrays im Nano-Spektrometer.
Resumo:
Optische Spektroskopie ist eine sehr wichtige Messtechnik mit einem hohen Potential für zahlreiche Anwendungen in der Industrie und Wissenschaft. Kostengünstige und miniaturisierte Spektrometer z.B. werden besonders für moderne Sensorsysteme “smart personal environments” benötigt, die vor allem in der Energietechnik, Messtechnik, Sicherheitstechnik (safety and security), IT und Medizintechnik verwendet werden. Unter allen miniaturisierten Spektrometern ist eines der attraktivsten Miniaturisierungsverfahren das Fabry Pérot Filter. Bei diesem Verfahren kann die Kombination von einem Fabry Pérot (FP) Filterarray und einem Detektorarray als Mikrospektrometer funktionieren. Jeder Detektor entspricht einem einzelnen Filter, um ein sehr schmales Band von Wellenlängen, die durch das Filter durchgelassen werden, zu detektieren. Ein Array von FP-Filter wird eingesetzt, bei dem jeder Filter eine unterschiedliche spektrale Filterlinie auswählt. Die spektrale Position jedes Bandes der Wellenlänge wird durch die einzelnen Kavitätshöhe des Filters definiert. Die Arrays wurden mit Filtergrößen, die nur durch die Array-Dimension der einzelnen Detektoren begrenzt werden, entwickelt. Allerdings erfordern die bestehenden Fabry Pérot Filter-Mikrospektrometer komplizierte Fertigungsschritte für die Strukturierung der 3D-Filter-Kavitäten mit unterschiedlichen Höhen, die nicht kosteneffizient für eine industrielle Fertigung sind. Um die Kosten bei Aufrechterhaltung der herausragenden Vorteile der FP-Filter-Struktur zu reduzieren, wird eine neue Methode zur Herstellung der miniaturisierten FP-Filtern mittels NanoImprint Technologie entwickelt und präsentiert. In diesem Fall werden die mehreren Kavitäten-Herstellungsschritte durch einen einzigen Schritt ersetzt, die hohe vertikale Auflösung der 3D NanoImprint Technologie verwendet. Seit dem die NanoImprint Technologie verwendet wird, wird das auf FP Filters basierende miniaturisierte Spectrometer nanospectrometer genannt. Ein statischer Nano-Spektrometer besteht aus einem statischen FP-Filterarray auf einem Detektorarray (siehe Abb. 1). Jeder FP-Filter im Array besteht aus dem unteren Distributed Bragg Reflector (DBR), einer Resonanz-Kavität und einen oberen DBR. Der obere und untere DBR sind identisch und bestehen aus periodisch abwechselnden dünnen dielektrischen Schichten von Materialien mit hohem und niedrigem Brechungsindex. Die optischen Schichten jeder dielektrischen Dünnfilmschicht, die in dem DBR enthalten sind, entsprechen einen Viertel der Design-Wellenlänge. Jeder FP-Filter wird einer definierten Fläche des Detektorarrays zugeordnet. Dieser Bereich kann aus einzelnen Detektorelementen oder deren Gruppen enthalten. Daher werden die Seitenkanal-Geometrien der Kavität aufgebaut, die dem Detektor entsprechen. Die seitlichen und vertikalen Dimensionen der Kavität werden genau durch 3D NanoImprint Technologie aufgebaut. Die Kavitäten haben Unterschiede von wenigem Nanometer in der vertikalen Richtung. Die Präzision der Kavität in der vertikalen Richtung ist ein wichtiger Faktor, der die Genauigkeit der spektralen Position und Durchlässigkeit des Filters Transmissionslinie beeinflusst.
Resumo:
Tunable Optical Sensor Arrays (TOSA) based on Fabry-Pérot (FP) filters, for high quality spectroscopic applications in the visible and near infrared spectral range are investigated within this work. The optical performance of the FP filters is improved by using ion beam sputtered niobium pentoxide (Nb2O5) and silicon dioxide (SiO2) Distributed Bragg Reflectors (DBRs) as mirrors. Due to their high refractive index contrast, only a few alternating pairs of Nb2O5 and SiO2 films can achieve DBRs with high reflectivity in a wide spectral range, while ion beam sputter deposition (IBSD) is utilized due to its ability to produce films with high optical purity. However, IBSD films are highly stressed; resulting in stress induced mirror curvature and suspension bending in the free standing filter suspensions of the MEMS (Micro-Electro-Mechanical Systems) FP filters. Stress induced mirror curvature results in filter transmission line degradation, while suspension bending results in high required filter tuning voltages. Moreover, stress induced suspension bending results in higher order mode filter operation which in turn degrades the optical resolution of the filter. Therefore, the deposition process is optimized to achieve both near zero absorption and low residual stress. High energy ion bombardment during film deposition is utilized to reduce the film density, and hence the film compressive stress. Utilizing this technique, the compressive stress of Nb2O5 is reduced by ~43%, while that for SiO2 is reduced by ~40%. Filters fabricated with stress reduced films show curvatures as low as 100 nm for 70 μm mirrors. To reduce the stress induced bending in the free standing filter suspensions, a stress optimized multi-layer suspension design is presented; with a tensile stressed metal sandwiched between two compressively stressed films. The stress in Physical Vapor Deposited (PVD) metals is therefore characterized for use as filter top-electrode and stress compensating layer. Surface micromachining is used to fabricate tunable FP filters in the visible spectral range using the above mentioned design. The upward bending of the suspensions is reduced from several micrometers to less than 100 nm and 250 nm for two different suspension layer combinations. Mechanical tuning of up to 188 nm is obtained by applying 40 V of actuation voltage. Alternatively, a filter line with transmission of 65.5%, Full Width at Half Maximum (FWHM) of 10.5 nm and a stopband of 170 nm (at an output wavelength of 594 nm) is achieved. Numerical model simulations are also performed to study the validity of the stress optimized suspension design for the near infrared spectral range, wherein membrane displacement and suspension deformation due to material residual stress is studied. Two bandpass filter designs based on quarter-wave and non-quarter-wave layers are presented as integral components of the TOSA. With a filter passband of 135 nm and a broad stopband of over 650 nm, high average filter transmission of 88% is achieved inside the passband, while maximum filter transmission of less than 1.6% outside the passband is achieved.
Resumo:
Micromirror arrays are a very strong candidate for future energy saving applications. Within this work, the fabrication process for these micromirror arrays has been optimized and some steps for the large area fabrication of micromirror modules were performed. At first the surface roughness of the insulation layer of silicon dioxide (SiO2) was investigated. This SiO2 thin layer was deposited on three different type of substrates i.e. silicon, glass and Polyethylene Naphthalate (PEN) substrates. The deposition techniques which has been used are Plasma Enhanced Chemical Vapor Deposition (PECVD), Physical Vapor Deposition (PVD) and Ion Beam Sputter Deposition (IBSD). The thickness of the SiO2 thin layer was kept constant at 150nm for each deposition process. The surface roughness was measured by Stylus Profilometry and Atomic Force Microscopy (AFM). It was found that the layer which was deposited by IBSD has got the minimum surface roughness value and the layer which was deposited by PECVD process has the highest surface roughness value. During the same investigation, the substrate temperature of PECVD was varied from 80° C to 300° C with the step size of 40° C and it was found that the surface roughness keeps on increasing as the substrate holder temperature increases in the PECVD process. A new insulation layer system was proposed to minimize the dielectric breakdown effect in insulation layer for micromirror arrays. The conventional bilayer system was replaced by five layer system but the total thickness of insulation layer remains the same. It was found that during the actuation of micromirror arrays structure, the dielectric breakdown effect was reduced considerably as compared to the bilayer system. In the second step the fabrication process of the micromirror arrays was successfully adapted and transferred from glass substrates to the flexible PEN substrates by optimizing the conventional process recipe. In the last section, a large module of micromirror arrays was fabricated by electrically interconnecting four 10cm×10cm micromirror modules on a glass pane having dimensions of 21cm×21cm.
Resumo:
In dieser Arbeit werden optische Filterarrays für hochqualitative spektroskopische Anwendungen im sichtbaren (VIS) Wellenlängenbereich untersucht. Die optischen Filter, bestehend aus Fabry-Pérot (FP)-Filtern für hochauflösende miniaturisierte optische Nanospektrometer, basieren auf zwei hochreflektierenden dielektrischen Spiegeln und einer zwischenliegenden Resonanzkavität aus Polymer. Jeder Filter erlaubt einem schmalbandigem spektralen Band (in dieser Arbeit Filterlinie genannt) ,abhängig von der Höhe der Resonanzkavität, zu passieren. Die Effizienz eines solchen optischen Filters hängt von der präzisen Herstellung der hochselektiven multispektralen Filterfelder von FP-Filtern mittels kostengünstigen und hochdurchsatz Methoden ab. Die Herstellung der multiplen Spektralfilter über den gesamten sichtbaren Bereich wird durch einen einzelnen Prägeschritt durch die 3D Nanoimprint-Technologie mit sehr hoher vertikaler Auflösung auf einem Substrat erreicht. Der Schlüssel für diese Prozessintegration ist die Herstellung von 3D Nanoimprint-Stempeln mit den gewünschten Feldern von Filterkavitäten. Die spektrale Sensitivität von diesen effizienten optischen Filtern hängt von der Genauigkeit der vertikalen variierenden Kavitäten ab, die durch eine großflächige ‚weiche„ Nanoimprint-Technologie, UV oberflächenkonforme Imprint Lithographie (UV-SCIL), ab. Die Hauptprobleme von UV-basierten SCIL-Prozessen, wie eine nichtuniforme Restschichtdicke und Schrumpfung des Polymers ergeben Grenzen in der potenziellen Anwendung dieser Technologie. Es ist sehr wichtig, dass die Restschichtdicke gering und uniform ist, damit die kritischen Dimensionen des funktionellen 3D Musters während des Plasmaätzens zur Entfernung der Restschichtdicke kontrolliert werden kann. Im Fall des Nanospektrometers variieren die Kavitäten zwischen den benachbarten FP-Filtern vertikal sodass sich das Volumen von jedem einzelnen Filter verändert , was zu einer Höhenänderung der Restschichtdicke unter jedem Filter führt. Das volumetrische Schrumpfen, das durch den Polymerisationsprozess hervorgerufen wird, beeinträchtigt die Größe und Dimension der gestempelten Polymerkavitäten. Das Verhalten des großflächigen UV-SCIL Prozesses wird durch die Verwendung von einem Design mit ausgeglichenen Volumen verbessert und die Prozessbedingungen werden optimiert. Das Stempeldesign mit ausgeglichen Volumen verteilt 64 vertikal variierenden Filterkavitäten in Einheiten von 4 Kavitäten, die ein gemeinsames Durchschnittsvolumen haben. Durch die Benutzung der ausgeglichenen Volumen werden einheitliche Restschichtdicken (110 nm) über alle Filterhöhen erhalten. Die quantitative Analyse der Polymerschrumpfung wird in iii lateraler und vertikaler Richtung der FP-Filter untersucht. Das Schrumpfen in vertikaler Richtung hat den größten Einfluss auf die spektrale Antwort der Filter und wird durch die Änderung der Belichtungszeit von 12% auf 4% reduziert. FP Filter die mittels des Volumengemittelten Stempels und des optimierten Imprintprozesses hergestellt wurden, zeigen eine hohe Qualität der spektralen Antwort mit linearer Abhängigkeit zwischen den Kavitätshöhen und der spektralen Position der zugehörigen Filterlinien.
Resumo:
Im Rahmen dieser Arbeit wird die Herstellung von miniaturisierten NIR-Spektrometern auf Basis von Fabry-Pérot (FP) Filter Arrays behandelt. Bisher ist die kostengünstige Strukturierung von homogenen und vertikal erweiterten Kavitäten für NIR FP-Filter mittels Nanoimprint Technologie noch nicht verfügbar, weil die Qualität der Schichten des Prägematerials unzureichend ist und die geringe Mobilität der Prägematerialien nicht ausreicht, um die vertikal erweiterten Kavitäten zu füllen. Diese Arbeit konzentriert sich auf die Reduzierung des technischen Aufwands zur Herstellung von homogenen und vertikal erweiterten Kavitäten. Zur Strukturierung der Kavitäten wird ein großflächiger substratkonformer UV-Nanoimprint Prozess (SCIL - Substrate Conformal Imprint Lithoghaphy) verwendet, der auf einem Hybridstempel basiert und Vorteile von harten und weichen Stempeln vereint. Um die genannten Limitierungen zu beseitigen, werden alternative Designs der Kavitäten untersucht und ein neues Prägematerial eingesetzt. Drei Designlösungen zur Herstellung von homogenen und erweiterten Kavitäten werden untersucht und verglichen: (i) Das Aufbringen des Prägematerials mittel mehrfacher Rotationsbeschichtung, um eine höhere Schichtdicke des Prägematerials vor dem Prägeprozess zu erzeugen, (ii) die Verwendung einer hybriden Kavität bestehend aus einer strukturierten Schicht des Prägematerials eingebettet zwischen zwei Siliziumoxidschichten, um die Schichtdicke der organischen Kavität zu erweitern und (iii) die Optimierung des Prägeprozesses durch Verwendung eines neuen Prägematerials. Die mit diesen drei Ansätzen hergestellten FP-Filter Arrays zeigen, hohe Transmissionen (beste Transmission > 90%) und kleine Linienbreiten (Halbwertsbreiten <5 nm).
Resumo:
In this work, fabrication processes for daylight guiding systems based on micromirror arrays are developed, evaluated and optimized.Two different approaches are used: At first, nanoimprint lithography is used to fabricate large area micromirrors by means of Substrate Conformal Imprint Lithography (SCIL).Secondly,a new lithography technique is developed using a novel bi-layered photomask to fabricate large area micromirror arrays. The experimental results showing a reproducible stable process, high yield, and is consuming less material, time, cost and effort.