7 resultados para Multi-agent simulation and artificial snow optimization
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.
Resumo:
Excimerlaser sind gepulste Gaslaser, die Laseremission in Form von Linienstrahlung – abhängig von der Gasmischung – im UV erzeugen. Der erste entladungsgepumpte Excimerlaser wurde 1977 von Ischenko demonstriert. Alle kommerziell verfügbaren Excimerlaser sind entladungsgepumpte Systeme. Um eine Inversion der Besetzungsdichte zu erhalten, die notwendig ist, um den Laser zum Anschwingen zu bekommen, muss aufgrund der kurzen Wellenlänge sehr stark gepumpt werden. Diese Pumpleistung muss von einem Impulsleistungsmodul erzeugt werden. Als Schaltelement gebräuchlich sind Thyratrons, Niederdruckschaltröhren, deren Lebensdauer jedoch sehr limitiert ist. Deshalb haben sich seit Mitte der 1990iger Jahre Halbleiterschalter mit Pulskompressionsstufen auch in dieser Anwendung mehr und mehr durchgesetzt. In dieser Arbeit wird versucht, die Pulskompression durch einen direkt schaltenden Halbleiterstapel zu ersetzen und dadurch die Verluste zu reduzieren sowie den Aufwand für diese Pulskompression einzusparen. Zudem kann auch die maximal mögliche Repetitionsrate erhöht werden. Um die Belastung der Bauelemente zu berechnen, wurden für alle Komponenten möglichst einfache, aber leistungsfähige Modelle entwickelt. Da die normalerweise verfügbaren Daten der Bauelemente sich aber auf andere Applikationen beziehen, mussten für alle Bauteile grundlegende Messungen im Zeitbereich der späteren Applikation gemacht werden. Für die nichtlinearen Induktivitäten wurde ein einfaches Testverfahren entwickelt um die Verluste bei sehr hohen Magnetisierungsgeschwindigkeiten zu bestimmen. Diese Messungen sind die Grundlagen für das Modell, das im Wesentlichen eine stromabhängige Induktivität beschreibt. Dieses Modell wurde für den „magnetic assist“ benützt, der die Einschaltverluste in den Halbleitern reduziert. Die Impulskondensatoren wurden ebenfalls mit einem in der Arbeit entwickelten Verfahren nahe den späteren Einsatzparametern vermessen. Dabei zeigte sich, dass die sehr gebräuchlichen Class II Keramikkondensatoren für diese Anwendung nicht geeignet sind. In der Arbeit wurden deshalb Class I Hochspannungs- Vielschicht- Kondensatoren als Speicherbank verwendet, die ein deutlich besseres Verhalten zeigen. Die eingesetzten Halbleiterelemente wurden ebenfalls in einem Testverfahren nahe den späteren Einsatzparametern vermessen. Dabei zeigte sich, dass nur moderne Leistungs-MOSFET´s für diesen Einsatz geeignet sind. Bei den Dioden ergab sich, dass nur Siliziumkarbid (SiC) Schottky Dioden für die Applikation einsetzbar sind. Für die Anwendung sind prinzipiell verschiedene Topologien möglich. Bei näherer Betrachtung zeigt sich jedoch, dass nur die C-C Transfer Anordnung die gewünschten Ergebnisse liefern kann. Diese Topologie wurde realisiert. Sie besteht im Wesentlichen aus einer Speicherbank, die vom Netzteil aufgeladen wird. Aus dieser wird dann die Energie in den Laserkopf über den Schalter transferiert. Aufgrund der hohen Spannungen und Ströme müssen 24 Schaltelemente in Serie und je 4 parallel geschaltet werden. Die Ansteuerung der Schalter wird über hochisolierende „Gate“-Transformatoren erreicht. Es zeigte sich, dass eine sorgfältig ausgelegte dynamische und statische Spannungsteilung für einen sicheren Betrieb notwendig ist. In der Arbeit konnte ein Betrieb mit realer Laserkammer als Last bis 6 kHz realisiert werden, der nur durch die maximal mögliche Repetitionsrate der Laserkammer begrenzt war.
Resumo:
Weltweit leben mehr als 2 Milliarden Menschen in ländlichen Gebieten. Als Konzept für die elektrische Energieversorgung solcher Gebiete kommen dezentrale elektrische Energieversorgungseinheiten zum Einsatz, die lokal verfügbare erneuerbare Ressourcen nutzen. Stand der Technik bilden Einheiten, die auf PV-Diesel-Batterie System basieren. Die verwendeten Versorgungsskonzepte in Hybridsystemen sind durch den Einsatz von Batterien als Energiespeicher meist wenig zuverlässig und teuer. Diese Energiespeicher sind sehr aufwendig zu überwachen und schwerig zu entsorgen. Den Schwerpunkt dieser Arbeit bildet die Entwicklung eines neuen Hybridsystems mit einem Wasserreservoir als Energiespeicher. Dieses Konzept eignet sich für Bergregionen in Entwicklungsländern wie Nepal, wo z.B. neben der solaren Strahlung kleine Flüsse in großer Anzahl vorhanden sind. Das Hybridsystem verfügt über einen Synchrongenerator, der die Netzgrößen Frequenz und Spannung vorgibt und zusätzlich unterstützen PV und Windkraftanlage die Versorgung. Die Wasserkraftanlage soll den Anteil der erneuerbaren Energienutzung erhöhen. Die Erweiterung des Systems um ein Dieselaggregat soll die Zuverlässigkeit der Versorgung erhöhen. Das Hybridsystem inkl. der Batterien wird modelliert und simuliert. Anschließend werden die Simulations- und Messergebnisse verglichen, um eine Validierung des Modells zu erreichen. Die Regelungsstruktur ist aufgrund der hohen Anzahl an Systemen und Parametern sehr komplex. Sie wird mit dem Simulationstool Matlab/Simulink nachgebildet. Das Verhalten des Gesamtsystems wird unter verschiedene Lasten und unterschiedlichen meteorologischen Gegebenheiten untersucht. Ein weiterer Schwerpunkt dieser Arbeit ist die Entwicklung einer modularen Energiemanagementeinheit, die auf Basis der erneuerbaren Energieversorgung aufgebaut wird. Dabei stellt die Netzfrequenz eine wichtige Eingangsgröße für die Regelung dar. Sie gibt über die Wirkleistungsstatik die Leistungsänderung im Netz wider. Über diese Angabe und die meteorologischen Daten kann eine optimale wirtschaftliche Aufteilung der Energieversorgung berechnet und eine zuverlässige Versorgung gewährleistet werden. Abschließend wurde die entwickelte Energiemanagementeinheit hardwaretechnisch aufgebaut, sowie Sensoren, Anzeige- und Eingabeeinheit in die Hardware integriert. Die Algorithmen werden in einer höheren Programmiersprache umgesetzt. Die Simulationen unter verschiedenen meteorologischen und netztechnischen Gegebenheiten mit dem entwickelten Model eines Hybridsystems für die elektrische Energieversorgung haben gezeigt, dass das verwendete Konzept mit einem Wasserreservoir als Energiespeicher ökologisch und ökonomisch eine geeignete Lösung für Entwicklungsländer sein kann. Die hardwaretechnische Umsetzung des entwickelten Modells einer Energiemanagementeinheit hat seine sichere Funktion bei der praktischen Anwendung in einem Hybridsystem bestätigen können.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
Many examples for emergent behaviors may be observed in self-organizing physical and biological systems which prove to be robust, stable, and adaptable. Such behaviors are often based on very simple mechanisms and rules, but artificially creating them is a challenging task which does not comply with traditional software engineering. In this article, we propose a hybrid approach by combining strategies from Genetic Programming and agent software engineering, and demonstrate that this approach effectively yields an emergent design for given problems.
Resumo:
Cooperative behaviour of agents within highly dynamic and nondeterministic domains is an active field of research. In particular establishing highly responsive teamwork, where agents are able to react on dynamic changes in the environment while facing unreliable communication and sensory noise, is an open problem. Moreover, modelling such responsive, cooperative behaviour is difficult. In this work, we specify a novel model for cooperative behaviour geared towards highly dynamic domains. In our approach, agents estimate each other’s decision and correct these estimations once they receive contradictory information. We aim at a comprehensive approach for agent teamwork featuring intuitive modelling capabilities for multi-agent activities, abstractions over activities and agents, and a clear operational semantic for the new model. This work encompasses a complete specification of the new language, ALICA.
Resumo:
Mit der vorliegenden Arbeit soll ein Beitrag zu einer (empirisch) gehaltvollen Mikrofundierung des Innovationsgeschehens im Rahmen einer evolutorischen Perspektive geleistet werden. Der verhaltensbezogene Schwerpunkt ist dabei, in unterschiedlichem Ausmaß, auf das Akteurs- und Innovationsmodell von Herbert Simon bzw. der Carnegie-School ausgerichtet und ergänzt, spezifiziert und erweitert dieses unter anderem um vertiefende Befunde der Kreativitäts- und Kognitionsforschung bzw. der Psychologie und der Vertrauensforschung sowie auch der modernen Innovationsforschung. zudem Bezug auf einen gesellschaftlich und ökonomisch relevanten Gegenstandsbereich der Innovation, die Umweltinnovation. Die Arbeit ist sowohl konzeptionell als auch empirisch ausgerichtet, zudem findet die Methode der Computersimulation in Form zweier Multi-Agentensysteme Anwendung. Als zusammenfassendes Ergebnis lässt sich im Allgemeinen festhalten, dass Innovationen als hochprekäre Prozesse anzusehen sind, welche auf einer Verbindung von spezifischen Akteursmerkmalen, Akteurskonstellationen und Umfeldbedingungen beruhen, Iterationsschleifen unterliegen (u.a. durch Lernen, Rückkoppelungen und Aufbau von Vertrauen) und Teil eines umfassenderen Handlungs- sowie (im Falle von Unternehmen) Organisationskontextes sind. Das Akteurshandeln und die Interaktion von Akteuren sind dabei Ausgangspunkt für Emergenzen auf der Meso- und der Makroebene. Die Ergebnisse der Analysen der in dieser Arbeit enthaltenen fünf Fachbeiträge zeigen im Speziellen, dass der Ansatz von Herbert Simon bzw. der Carnegie-School eine geeignete theoretische Grundlage zur Erfassung einer prozessorientierten Mikrofundierung des Gegenstandsbereichs der Innovation darstellt und – bei geeigneter Ergänzung und Adaption an den jeweiligen Erkenntnisgegenstand – eine differenzierte Betrachtung unterschiedlicher Arten von Innovationsprozessen und deren akteursbasierten Grundlagen sowohl auf der individuellen Ebene als auch auf Ebene von Unternehmen ermöglicht. Zudem wird deutlich, dass der Ansatz von Herbert Simon bzw. der Carnegie-School mit dem Initiationsmodell einen zusätzlichen Aspekt in die Diskussion einbringt, welcher bislang wenig Aufmerksamkeit fand, jedoch konstitutiv für eine ökonomische Perspektive ist: die Analyse der Bestimmungsgrößen (und des Prozesses) der Entscheidung zur Innovation. Denn auch wenn das Verständnis der Prozesse bzw. der Determinanten der Erstellung, Umsetzung und Diffusion von Innovationen von grundlegender Bedeutung ist, ist letztendlich die Frage, warum und unter welchen Umständen Akteure sich für Innovationen entscheiden, ein zentraler Kernbereich einer ökonomischen Betrachtung. Die Ergebnisse der Arbeit sind auch für die praktische Wirtschaftspolitik von Bedeutung, insbesondere mit Blick auf Innovationsprozesse und Umweltwirkungen.