2 resultados para Motion study

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of molecular multiphoton ionization and fragmentation of a diatomic molecule (Na_2) have been studied in molecular beam experiments. Femtosecond laser pulses from an amplified colliding-pulse mode-locked (CPM) ring dye laser are employed to induce and probe the molecular transitions. The final continuum states are analyzed by photoelectron spectroscopy, by ion mass spectrometry and by measuring the kinetic energy of the formed ionic fragments. Pump-probe spectra employing 70-fs laser pulses have been measured to study the time dependence of molecular multiphoton ionization and fragmentation. The oscillatory structure of the transient spectra showing the dynamics on the femtosecond time scale can best be understood in terms of the motion of wave packets in bound molecular potentials. The transient Na_2^+ ionization and the transient Na^+ fragmentation spectra show that contributions from direct photoionization of a singly excited electronic state and from excitation and autoionization of a bound doubly excited molecular state determine the time evolution of molecular multiphoton ionization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motion of a vibrational wave packet in the bound A(^1 \summe^+_u) electronic state of the sodium dimer is detected in a femtosecond pump/probe molecular beam experiment. For short times harmonic motion is seen in the total ion yield of Na^+_2 as a function of delay time between the two laser pulses. The spreading of the wave packet results in the loss of the periodic variation of the ion signal. For longer delay times (47 ps) the wave packet regains its initial form which is reflected in the revival structure of the Na^+_2 signal. Time-dependent quantum calculations reproduce the measured effects.