5 resultados para Monitoring urban growth
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The main objective of this PhD research study is to provide a perspective on the urban growth management and sustainable development in Palestine, and more specifically in Hebron district as a case study. Hebron is located 36 km south of Jerusalem, with an overall population size of around 600,000 people living in a total area around1246km2. Hebron is the biggest Palestinian district that has 16 municipalities and 154 localities. The research discusses and analyzes the urban planning system, economical and environmental policies and the solution required to manage and integrate the development elements to develop a sustainable development plan for Hebron. The research provides answers for fundamental questions such as what kind and definition of sustainable development are applicable to the Palestinian case?. What are the sustainability problems there and how the Israeli occupation and unstable political condition affect the sustainable development in Palestine? What are the urban growth management and sustainability policies and actions required from government, public and privets sector in Palestine? The fast urban growth in Palestine is facing many problems and challenges due to the increase in the population size and the resulting impact of this increase including, but not limited to, the demand of new houses, need for more infrastructure services, demands on new industrial, commercial, educational and health projects, which in turn reduces the area of agricultural lands and threatens the natural resources and environment. There are also other associated sustainability problems like the absence of effective plans or regulations that control urban expansion, the absence of sufficient sustainable development plans at the national levels for the district, new job requirements, Israeli restrictions and occupation for more than 60 years, existence of construction factories near residential areas, poor public awareness and poor governmental funds for service projects and development plans. The study consists of nine chapters. Chapter One includes an introduction, study objectives, problems and justifications, while Chapter Two has a theoretical background on sustainability topic and definitions of sustainability. The Palestinian urban planning laws and local government systems are discussed in Chapter Three and the methodology of research is detailed in Chapter Four. As for Chapter Five, it provides a general background on Hebron District including demographical and economical profiles, along with recommendations related to sustainable development for each profile Chapter Six addresses the urban environment, sustainability priorities and policies required. Chapter Seven discusses and analyzes infrastructure services including transportation, water and wastewater. As for Chapter Eight, it addresses the land use, housing and urban expansion beside the cultural heritage, natural heritage with relevant sustainable development polices and recommendations. Finally, Chapter Nine includes a conclusion and comprehensive recommendations integrating all of urban and sustainability event in one map. Hebron has a deep history including a rich cultural heritage aged by thousands of years, with 47% of Hebron district population under 14 years old. Being the biggest Palestinian district, Hebron has thousands of industrial and economical organizations beside a large agricultural sector at Palestine level. This gives Hebron a potential to play major roles in developing a national sustainability plan, as the current urban planning system in Palestine needs urgent reform and development to fulfill the sustainability requirement. The municipalities and ministers should find permanent financial aid for urban planning and development studies so as to face future challenges. The Palestinian government can benefit from available local human resources in development projects; hence Palestinian people have sufficient qualifications in most sectors. The Palestinian people also can invest in the privet sector in Palestine in case businessmen have been encouraged and clear investment laws and plans have been developed. The study provides recommendations associated to the sustainable development in Palestine in general and Hebron, as a case study, in specific. Recommendations include increasing the privet sector as well as the public involvement in urban growth management, and stopping unplanned urban expansion, subjecting granting building permits of new projects to the no-harm environmental impact assessment, increasing the coordination and cooperation between localities and central bodies, protection and renovation of old cites and green areas, increasing the quality and quantity of infrastructure services, establishing district urban planning department to coordinate and organize urban planning and sustainable development activities. Also, among recommendations come dividing Hebron into three planning and administrative areas (north, central and south), and dividing the sustainable development and implementation period (2010 to 2025) into three main phases. Finally, the study strongly recommends benefiting from the same urban development plans in similar districts at national and international levels, also to use new technologies and information systems in urban planning process.
Resumo:
Urban and peri-urban agriculture (UPA) increasingly supplies food and non-food values to the rapidly growing West African cities. However, little is known about the resource use efficiencies in West African small-scale UPA crop and livestock production systems, and about the benefits that urban producers and retailers obtain from the cultivation and sale of UPA products. To contribute to filling this gap of knowledge, the studies comprising this doctoral thesis determined nutrient use efficiencies in representative urban crop and livestock production system in Niamey, Niger, and investigated potential health risks for consumers. Also assessed was the economic efficiency of urban farming activities. The field study, which was conducted during November 2005 to January 2008, quantified management-related horizontal nutrient flows in 10 vegetable gardens, 9 millet fields and 13 cattle and small ruminant production units. These farms, selected on the basis of a preceding study, represented the diversity of UPA crop and livestock production systems in Niamey. Based on the management intensity, the market orientation and especially the nutrient input to individual gardens and fields, these were categorized as high or low input systems. In the livestock study, high and low input cattle and small ruminant units were differentiated based on the amounts of total feed dry matter offered daily to the animals at the homestead. Additionally, economic returns to gardeners and market retailers cultivating and selling amaranth, lettuce, cabbage and tomato - four highly appreciated vegetables in Niamey were determined during a 6-months survey in forty gardens and five markets. For vegetable gardens and millet fields, significant differences in partial horizontal nutrient balances were determined for both management intensities. Per hectare, average annual partial balances for carbon (C), nitrogen (N), phosphorus (P) and potassium (K) amounted to 9936 kg C, 1133 kg N, 223 kg P and 312 kg K in high input vegetable gardens as opposed to 9580 kg C, 290 kg N, 125 kg P and 351 kg K in low input gardens. These surpluses were mainly explained by heavy use of mineral fertilizers and animal manure to which irrigation with nutrient rich wastewater added. In high input millet fields, annual surpluses of 259 kg C ha-1, 126 kg N ha-1, 20 kg P ha-1 and 0.4 kg K ha-1 were determined. Surpluses of 12 kg C ha-1, 17 kg N ha-1, and deficits of -3 kg P ha-1 and -3 kg K ha-1 were determined for low input millet fields. Here, carbon and nutrient inputs predominantly originated from livestock manure application through corralling of sheep, goats and cattle. In the livestock enterprises, N, P and K supplied by forages offered at the farm exceeded the animals’ requirements for maintenance and growth in high and low input sheep/goat as well as cattle units. The highest average growth rate determined in high input sheep/goat units was 104 g d-1 during the cool dry season, while a maximum average gain of 70 g d-1 was determined for low input sheep/goat units during the hot dry season. In low as well as in high input cattle units, animals lost weight during the hot dry season, and gained weight during the cool dry season. In all livestock units, conversion efficiencies for feeds offered at the homestead were rather poor, ranging from 13 to 42 kg dry matter (DM) per kg live weight gain (LWG) in cattle and from 16 to 43 kg DM kg-1 LWG in sheep/goats, pointing to a substantial waste of feeds and nutrients. The economic assessment of the production of four high value vegetables pointed to a low efficiency of N and P use in amaranth and lettuce production, causing low economic returns for these crops compared to tomato and cabbage to which inexpensive animal manure was applied. The net profit of market retailers depended on the type of vegetable marketed. In addition it depended on marketplace for amaranth and lettuce, and on season and marketplace for cabbage and tomato. Analysis of faecal pathogens in lettuce irrigated with river water and fertilized with animal manure indicated a substantial contamination by Salmonella spp. with 7.2 x 104 colony forming units (CFU) per 25 g of produce fresh matter, while counts of Escherichia coli averaged 3.9 x 104 CFU g-1. In lettuce irrigated with wastewater, Salmonella counts averaged 9.8 x 104 CFU 25 g-1 and E. coli counts were 0.6 x 104 CFU g-1; these values exceeded the tolerable contamination levels in vegetables of 10 CFU g-1 for E. coli and of 0 CFU 25 g-1 for Salmonella. Taken together, the results of this study indicate that Niamey’s UPA enterprises put environmental safety at risk since excess inputs of N, P and K to crop and livestock production units favour N volatilisation and groundwater pollution by nutrient leaching. However, more detailed studies are needed to corroborate these indications. Farmers’ revenues could be significantly increased if nutrient use efficiency in the different production (sub)systems was improved by better matching nutrient supply through fertilizers and feeds with the actual nutrient demands of plants and animals.
Resumo:
The surge in the urban population evident in most developing countries is a worldwide phenomenon, and often the result of drought, conflicts, poverty and the lack of education opportunities. In parallel with the growth of the cities is the growing need for food which leads to the burgeoning expansion of urban and peri-urban agriculture (UPA). In this context, urban agriculture (UA) contributes significantly to supplying local markets with both vegetable and animal produce. As an income generating activity, UA also contributes to the livelihoods of poor urban dwellers. In order to evaluate the nutrient status of urban soils in relation to garden management, this study assessed nutrient fluxes (inputs and outputs) in gardens on urban Gerif soils on the banks of the River Nile in Khartoum, the capital city of Sudan. To achieve this objective, a preliminary baseline survey was carried out to describe the structure of the existing garden systems. In cooperation with the author of another PhD thesis (Ms. Ishtiag Abdalla), alternative uses of cow dung in brick making kilns in urban Khartoum were assessed; and the socio-economic criteria of the brick kiln owners or agents, economical and plant nutritional value of animal dung and the gaseous emission related to brick making activities were assessed. A total of 40 household heads were interviewed using a semi-structured questionnaire to collect information on demographic, socio-economic and migratory characteristics of the household members, the gardening systems used and the problems encountered in urban gardening. Based on the results of this survey, gardens were divided into three groups: mixed vegetable-fodder gardens, mixed vegetable-subsistence livestock gardens and pure vegetable gardens. The results revealed that UA is the exclusive domain of men, 80% of them non-native to Khartoum. The harvested produce in all gardens was market oriented and represented the main source of income for 83% of the gardeners. Fast growing leafy vegetables such as Jew’s mallow (Corchorous olitorius L.), purslane (Portulaca oleracea L.) and rocket (Eruca sativa Mill.) were the dominant cultivated species. Most of the gardens (95%) were continuously cultivated throughout the year without any fallow period, unless they were flooded. Gardeners were not generally aware of the importance of crop diversity, which may help them overcome the strongly fluctuating market prices for their produce and thereby strengthen the contributions of UA to the overall productivity of the city. To measure nutrient fluxes, four gardens were selected and their nutrients inputs and outputs flows were monitored. In each garden, all plots were monitored for quantification of nutrient inputs and outputs. To determine soil chemical fertility parameters in each of the studied gardens, soil samples were taken from three selected plots at the beginning of the study in October 2007 (gardens L1, L2 and H1) and in April 2008 (garden H2) and at the end of the study period in March 2010. Additional soil sampling occurred in May 2009 to assess changes in the soil nutrient status after the River Nile flood of 2008 had receded. Samples of rain and irrigation water (river and well-water) were analyzed for nitrogen (N), phosphorus (P), potassium (K) and carbon (C) content to determine their nutrient inputs. Catchment traps were installed to quantify the sediment yield from the River Nile flood. To quantify the nutrient inputs of sediments, samples were analyzed for N, P, K and organic carbon (Corg) content, cation exchange capacity (CEC) and the particle size distribution. The total nutrient inputs were calculated by multiplying the sediment nutrient content by total sediment deposits on individual gardens. Nutrient output in the form of harvested yield was quantified at harvest of each crop. Plant samples from each field were dried, and analyzed for their N, P, K and Corg content. Cumulative leaching losses of mineral N and P were estimated in a single plot in garden L1 from December 1st 2008 to July 1st 2009 using 12 ion exchange resins cartridges. Nutrients were extracted and analyzed for nitrate (NO3--N), ammonium (NH4+-N) and phosphate PO4-3-P. Changes in soil nutrient balance were assessed as inputs minus outputs. The results showed that across gardens, soil N and P concentrations increased from 2007 to 2009, while particle size distribution remained unchanged. Sediment loads and their respective contents of N, P and Corg decreased significantly (P < 0.05) from the gardens of the downstream lowlands (L1 and L2) to the gardens of the upstream highlands (H1 and H2). No significant difference was found in K deposits. None of the gardens received organic fertilizers and the only mineral fertilizer applied was urea (46-0-0). This equaled 29, 30, 54, and 67% of total N inputs to gardens L1, L2, H1, and H2, respectively. Sediment deposits of the River Nile floods contributed on average 67, 94, 6 and 42% to the total N, P, K and C inputs in lowland gardens and 33, 86, 4 and 37% of total N, P, K and C inputs in highland gardens. Irrigation water and rainfall contributed substantially to K inputs representing 96, 92, 94 and 96% of total K influxes in garden L1, L2, H1 and H2, respectively. Following the same order, total annual DM yields in the gardens were 26, 18, 16 and 1.8 t ha-1. Annual leaching losses were estimated to be 0.02 kg NH4+-N ha-1 (SE = 0.004), 0.03 kg NO3--N ha-1 (SE = 0.002) and 0.005 kg PO4-3-P ha-1 (SE = 0.0007). Differences between nutrient inputs and outputs indicated negative nutrient balances for P and K and positive balances of N and C for all gardens. The negative balances in P and K call for adoptions of new agricultural techniques such as regular manure additions or mulching which may enhance the soil organic matter status. A quantification of fluxes not measured in our study such as N2-fixation, dry deposition and gaseous emissions of C and N would be necessary to comprehensively assess the sustainability of these intensive gardening systems. The second part of the survey dealt with the brick making kilns. A total of 50 brick kiln owners/or agents were interviewed from July to August 2009, using a semi-structured questionnaire. The data collected included general information such as age, family size, education, land ownership, number of kilns managed and/or owned, number of months that kilns were in operation, quantity of inputs (cow dung and fuel wood) used, prices of inputs and products across the production season. Information related to the share value of the land on which the kilns were built and annual income for urban farmers and annual returns from dung for the animal raisers was also collected. Using descriptive statistics, budget calculation and Gini coefficient, the results indicated that renting the land to brick making kilns yields a 5-fold higher return than the rent for agriculture. Gini coefficient showed that the kiln owners had a more equal income distribution compared to farmers. To estimate emission of greenhouse gases (GHGs) and losses of N, P, K, Corg and DM from cow dung when used in brick making, samples of cow dung (loose and compacted) were collected from different kilns and analyzed for their N, P, K and Corg content. The procedure modified by the Intergovernmental Panel on Climate Change (IPCC, 1994) was used to estimate the gaseous emissions of cow dung and fuel wood. The amount of deforested wood was estimated according to the default values for wood density given by Dixon et al. (1991) and the expansion ratio for branches and small trees given by Brown et al. (1989). The data showed the monetary value of added N and P from cow dung was lower than for mineral fertilizers. Annual consumption of compacted dung (381 t DM) as biomass fuel by far exceeded the consumption of fuel wood (36 t DM). Gaseous emissions from cow dung and fuel wood were dominated by CO2, CO and CH4. Considering that Gerif land in urban Khartoum supports a multifunctional land use system, efficient use of natural resources (forest, dung, land and water) will enhance the sustainability of the UA and brick making activities. Adoption of new kilns with higher energy efficiency will reduce the amount of biomass fuels (cow dung and wood) used the amount of GHGs emitted and the threat to the few remaining forests.
Resumo:
If cities are to become more sustainable and resilient to change it is likely that they will have to engage with food at increasingly localised levels, in order to reduce their dependency on global systems. With 87 percent of people in developed regions estimated to be living in cities by 2050 it can be assumed that the majority of this localised production will occur in and around cities. As part of a 12 month engagement, Queen’s University Belfast designed and implemented an elevated aquaponic food system spanning the top internal floor and exterior roof space of a disused mill in Manchester, England. The experimental aquaponic system was developed to explore the possibilities and difficulties associated with integrating food production with existing buildings. This paper utilises empirical research regarding crop growth from the elevated aquaponic system and extrapolates the findings across a whole city. The resulting research enables the agricultural productive capacity of today’s cities to be estimated and a framework of implementation to be proposed.
Resumo:
Facing growth in demand, dairy production in peri-urban areas of developing countries is changing rapidly. To characterise this development around Bamako (Mali), this study establishes a typology of dairy production systems with a special focus on animal genetic resources. The survey included 52 dairy cattle farms from six peri-urban sites. It was conducted in 2011 through two visits, in the dry and harvest seasons. The median cattle number per farm was 17 (range 5-118) and 42% of farmers owned cropland (8.3 +/- 7.3 ha, minimum 1 ha, maximum 25 ha). Feeding strategy was a crucial variable in farm characterisation, accounting for about 85% of total expenses. The use of artificial insemination and a regular veterinary follow-up were other important parameters. According to breeders’ answers, thirty genetic profiles were identified, from local purebreds to different levels of crossbreds. Purebred animals raised were Fulani Zebu (45.8%), Maure Zebu (9.2%), Holstein (3.0%), Azawak Zebu (1.3%), Mere Zebu (0.5%) and Kuri taurine (0.1%). Holstein crossbred represented 30.5% of the total number of animals (19.0% Fulani-Holstein, 11.2% Maure-Holstein and 0.3% Kuri-Holstein). Montbéliarde, Normande and Limousin crossbreds were also found (6.6%, 0.7% and 0.3%, respectively). A multivariate analysis helped disaggregate the diversity of management practices. The high diversity of situations shows the need for consideration of typological characteristics for an appropriate intervention. Although strongly anchored on local breeds, the peri-urban dairy systems included a diversity of exotic cattle, showing an uncoordinated quest of breeders for innovation. Without a public intervention, this dynamic will result in an irremediable erosion of indigenous animal genetic resources.