5 resultados para Molecular Structure
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The potential energy curve of the system Ne-Ne is calculated for small internuclear distances from 0.005 to 3.0 au using a newly developed relativistic molecular Dirac-Fock-Slater code. A significant structure in the potential energy curve is found which leads to a nearly complete agreement with experimental differential elastic scattering cross sections. This demonstrates the presence of quasi-molecular effects in elastic ion-atom collisions at keV energies.
Resumo:
Non-relativistic Hartree-Fock-Slater and relativistic Dirac-Slater self-consistent orbital models are applied for the analysis of the electronic structure of the chalcogen hexafluorides: SF_6, SeF_6, TeF_6 and PoF_6. The molecular eigenfunctions and eigenvalues are generated using the discrete variational method (DVM) with numerical basis functions. The results obtained for SF_6 are compared with other ab initio calculations. Information about relativistic level shifts and spin-orbit splitting has been obtained by comparison between the non-relativistic and relativistic results.
Resumo:
The real-time dynamics of Na_n (n=3-21) cluster multiphoton ionization and fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Three dimensional wave packet motions in the trimer Na_3 ground state X and excited state B have been observed. We report the first study of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na_n^*) with femtosecond laser pulses. The observation of four absorption resonances for the cluster Na_8 with different energy widths and different decay patterns is more difficult to interpret by surface plasmon like resonances than by molecular structure and dynamics. Timeresolved fragmentation of cluster ions Na_n^+ indicates that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.
Resumo:
Mit dieser Arbeit wurde die Selbstassemblierung von dia- und paramagnetischen Molekülen sowie Einzelmolekülmagneten auf Goldsubstraten und magnetisch strukturierten Substraten untersucht. Dazu wurden drei verschiedene Klassen an Phthalocyaninderivaten verwendet: Diamagnetische Subphthalocyanine, paramagnetische Phthalocyaninatometalle und Diphthalocyaninatolanthanidkomplexe. Alle synthetisierten Verbindungen sind peripher thioethersubstituiert. Die Alkylketten (a: n-C8H17, b: n-C12H25) vermitteln die Löslichkeit in vielen organischen Solventien und sorgen für eine geordnete Assemblierung auf einer Oberfläche, wobei die Bindung auf Gold hauptsächlich über die Schwefelatome stattfindet. Die aus Lösung abgeschiedenen selbstassemblierten Monolagen wurden mit XPS, NEXAFS-Spektroskopie und ToF-SIMS untersucht. Bei der Selbstassemblierung auf magnetisch strukturierten Substraten stehen die Moleküle unter dem Einfluss magnetischer Streufelder und binden bevorzugt nur in bestimmten Bereichen. Die gebildeten Submonolagen wurden zusätzlich mit X-PEEM untersucht. Die erstmals dargestellten Manganphthalocyanine [MnClPc(SR)8] 1 wurden ausgehend von MnCl2 erhalten. Hier fand bei der Aufarbeitung an Luft eine Oxidation zu Mangan(III) statt; +III ist die stabilste Oxidationsstufe von Mangan in Phthalocyaninen. Der Nachweis des axialen Chloridoliganden erfolgte mit Massenspektrometrie und FIR- sowie Raman-Spektroskopie. SQUID-Messungen haben gezeigt, dass die Komplexe 1 vier ungepaarte Elektronen haben. Bei den Subphthalocyaninen [BClSubpc(SR)6] 2 wurde der axiale Chloridoligand mit dem stäbchenförmigen Phenolderivat 29-H substituiert und die erfolgreiche Ligandensubstitution durch NMR- und IR-Spektroskopie sowie Massenspektrometrie an den Produkten [BSubpc(SR)6(29)] 30 belegt. Der Radikalcharakter der synthetisierten Terbiumkomplexe [Tb{Pc(SR)8}2] 3 wurde spektroskopisch nachgewiesen; SQUID-Messungen ergaben, dass es sich um Einzelmolekülmagnete mit einer Energiebarriere U des Doppelpotentialtopfs von 880 K oder 610 cm-1 bei 3a handelt. Zunächst wurden die SAMs der Komplexverbindungen 1, 2, 30 und 3 auf nicht magnetisch strukturierten Goldsubstraten untersucht. Die Manganphthalocyanine 1 bilden geordnete SAMs mit größtenteils flach liegenden Molekülen, wie die XPS-, NEXAFS- und ToF-SIMS-Analyse zeigte. Die Mehrzahl der Thioether-Einheiten ist auf Gold koordiniert und die Alkylketten zeigen ungeordnet von der Oberfläche weg. Bei der Adsorption findet eine Reduktion zu Mangan(II) statt und der axiale Chloridoligand wird abgespalten. Das beruht auf dem sog. Oberflächen-trans-Effekt. Im vorliegenden Fall übt die Metalloberfläche einen stärkeren trans-Effekt als der axiale Ligand aus, was bisher experimentell noch nicht beobachtet wurde. Die thioethersubstituierten Subphthalocyanine 2 und 30 sowie die Diphthalocyaninatoterbium-Komplexe 3 sind ebenfalls für SAMs geeignet. Ihre Monolagen wurden mit XPS und NEXAFS-Spektroskopie untersucht, und trotz einer gewissen Unordnung in den Filmen liegen die Moleküle jeweils im Wesentlichen flach auf der Goldoberfläche. Vermutlich sind bei diesen Systemen auch die Alkylketten größtenteils parallel zur Oberfläche orientiert. Im Gegensatz zu den Manganphthalocyaninen 1 tritt bei 2b, 30a, 30b und 3b neben der koordinativen Bindung der Schwefelatome auf Gold auch eine für Thioether nicht erwartete kovalente Au–S-Bindung auf, die durch C–S-Bindungsbruch unter Abspaltung der Alkylketten ermöglicht wird. Der Anteil, zu dem dieser Prozess stattfindet, scheint nicht mit der Molekülstruktur zu korrelieren. Selbstassemblierte Submonolagen auf magnetisch strukturierten Substraten wurden mit dem diamagnetischen Subphthalocyanin 2b hergestellt. Der Nachweis der Submonolagen war schwierig und gelang schließlich durch eine Kombination von ToF-SIMS, NEXAFS Imaging und X-PEEM. Die Analyse der ToF-SIMS-Daten zeigte, dass tatsächlich eine Modulation der Verteilung der Moleküle auf einem unterwärts magnetisch strukturierten Substrat eintritt. Mit X-PEEM konnte die magnetische Struktur der ferromagnetischen Schicht des Substrats direkt der Verteilung der adsorbierten Moleküle zugeordnet werden. Die Subphthalocyanine 2b adsorbieren nicht an den Domänengrenzen, sondern vermehrt dazwischen. Auf Substraten mit abwechselnd 6.5 und 3.5 µm breiten magnetischen Domänen binden die Moleküle bevorzugt in den Bereichen geringster magnetischer Streufeldgradienten, also den größeren Domänen. Solche Substrate wurden für die ToF-SIMS- und X-PEEM-Messungen verwendet. Bei größeren magnetischen Strukturen mit ca. 400 µm breiten Domänen, wie sie aufgrund der geringeren Ortsauflösung dieser Methode für NEXAFS Imaging eingesetzt wurden, binden die Moleküle dann in allen Domänen. Die diamagnetischen Moleküle werden nach dieser Interpretation aus dem inhomogenen Magnetfeld über der Probenoberfläche heraus gedrängt und verhalten sich analog makroskopischer Diamagnete. Die eindeutige Detektion der Moleküle auf den magnetisch strukturierten Substraten konnte bisher nur für die diamagnetischen Subphthalocyanine 2b erfolgen. Um die Interpretation ihres Verhaltens bei der Selbstassemblierung in einem inhomogenen Magnetfeld weiter voranzutreiben, wurde das Subphthalocyanin 37b dargestellt, welches ein stabiles organisches TEMPO-Radikal in seinem axialen Liganden enthält. Das paramagnetische Subphthalocyanin 37b sollte auf den magnetisch strukturierten Substraten in Regionen starker magnetischer Streufelder binden und damit das entgegengesetzte Verhalten zu den diamagnetischen Subphthalocyaninen 2b zeigen. Aus Zeitgründen konnte dieser Nachweis im Rahmen dieser Arbeit noch nicht erbracht werden.
Resumo:
Diese Arbeit thematisiert die optimierte Darstellung von organischen Mikro- und Nanodrähten, Untersuchungen bezüglich deren molekularen Aufbaus und die anwendungsorientierte Charakterisierung der Eigenschaften. Mikro- und Nanodrähte haben in den letzten Jahren im Zuge der Miniaturisierung von Technologien an weitreichendem Interesse gewonnen. Solche eindimensionalen Strukturen, deren Durchmesser im Bereich weniger zehn Nanometer bis zu einigen wenigen Mikrometern liegt, sind Gegenstand intensiver Forschung. Neben anorganischen Ausgangssubstanzen zur Erzeugung von Mikro- und Nanodrähten haben organische Funktionsmaterialien aufgrund ihrer einfachen und kostengünstigen Verarbeitbarkeit sowie ihrer interessanten elektrischen und optischen Eigenschaften an Bedeutung gewonnen. Eine wichtige Materialklasse ist in diesem Zusammenhang die Verbindungsklasse der n-halbleitenden Perylentetracarbonsäurediimide (kurz Perylendiimide). Dem erfolgreichen Einsatz von eindimensionalen Strukturen als miniaturisierte Bausteine geht die optimierte und kontrollierte Herstellung voraus. Im Rahmen der Doktorarbeit wurde die neue Methode der Drahterzeugung „Trocknen unter Lösungsmittelatmosphäre“ entwickelt, welche auf Selbstassemblierung der Substanzmoleküle aus Lösung basiert und unter dem Einfluss von Lösungsmitteldampf direkt auf einem vorgegebenen Substrat stattfindet. Im Gegensatz zu literaturbekannten Methoden ist kein Transfer der Drähte aus einem Reaktionsgefäß nötig und damit verbundene Beschädigungen der Strukturen werden vermieden. Während herkömmliche Methoden in einer unkontrolliert großen Menge von ineinander verwundenen Drähten resultieren, erlaubt die substratbasierte Technik die Bildung voneinander separierter Einzelfasern und somit beispielsweise den Einsatz in Einzelstrukturbauteilen. Die erhaltenen Fasern sind morphologisch sehr gleichmäßig und weisen bei Längen von bis zu 5 mm bemerkenswert hohe Aspektverhältnisse von über 10000 auf. Darüber hinaus kann durch das direkte Drahtwachstum auf dem Substrat über den Einsatz von vorstrukturierten Oberflächen und Wachstumsmasken gerichtetes, lokal beschränktes Drahtwachstum erzielt werden und damit aktive Kontrolle auf Richtung und Wachstumsbereich der makroskopisch nicht handhabbaren Objekte ausgeübt werden. Um das Drahtwachstum auch hinsichtlich der Materialauswahl, d. h. der eingesetzten Ausgangsmaterialien zur Drahterzeugung und somit der resultierenden Eigenschaften der gebildeten Strukturen aktiv kontrollieren zu können, wird der Einfluss unterschiedlicher Parameter auf die Morphologie der Selbstassemblierungsprodukte am Beispiel unterschiedlicher Derivate betrachtet. So stellt sich zum einen die Art der eingesetzten Lösungsmittel in flüssiger und gasförmiger Phase beim Trocknen unter Lösungsmittelatmosphäre als wichtiger Faktor heraus. Beide Lösungsmittel dienen als Interaktionspartner für die Moleküle des funktionellen Drahtmaterials im Selbstassemblierungsprozess. Spezifische Wechselwirkungen zwischen Perylendiimid-Molekülen untereinander und mit Lösungsmittel-Molekülen bestimmen dabei die äußere Form der erhaltenen Strukturen. Ein weiterer wichtiger Faktor ist die Molekülstruktur des verwendeten funktionellen Perylendiimids. Es wird der Einfluss einer Bay-Substitution bzw. einer unsymmetrischen Imid-Substitution auf die Morphologie der erhaltenen Strukturen herausgestellt. Für das detaillierte Verständnis des Zusammenhanges zwischen Molekülstruktur und nötigen Wachstumsbedingungen für die Bildung von eindimensionalen Strukturen zum einen, aber auch die resultierenden Eigenschaften der erhaltenen Aggregationsprodukte zum anderen, sind Informationen über den molekularen Aufbau von großer Bedeutung. Im Rahmen der Doktorarbeit konnte ein molekular hoch geordneter, kristalliner Aufbau der Drähte nachgewiesen werden. Durch Kombination unterschiedlicher Messmethoden ist es gelungen, die molekulare Anordnung in Strukturen aus einem Spirobifluoren-substituierten Derivat in Form einer verkippten Molekülstapelung entlang der Drahtlängsrichtung zu bestimmen. Um mögliche Anwendungsbereiche der erzeugten Drähte aufzuzeigen, wurden diese hinsichtlich ihrer elektrischen und optischen Eigenschaften analysiert. Neben dem potentiellen Einsatz im Bereich von Filteranwendungen und Sensoren, sind vor allem die halbleitenden und optisch wellenleitenden Eigenschaften hervorzuheben. Es konnten organische Transistoren auf der Basis von Einzeldrähten mit im Vergleich zu Dünnschichtbauteilen erhöhten Ladungsträgerbeweglichkeiten präpariert werden. Darüber hinaus wurden die erzeugten eindimensionalen Strukturen als aktive optische Wellenleiter charakterisiert. Die im Rahmen der Dissertation erarbeiteten Kenntnisse bezüglich der Bildung von eindimensionalen Strukturen durch Selbstassemblierung, des Drahtaufbaus und erster anwendungsorientierter Charakterisierung stellen eine Basis zur Weiterentwicklung solcher miniaturisierter Bausteine für unterschiedlichste Anwendungen dar. Die neu entwickelte Methode des Trocknens unter Lösungsmittelatmosphäre ist nicht auf den Einsatz von Perylendiimiden beschränkt, sondern kann auf andere Substanzklassen ausgeweitet werden. Dies eröffnet breite Möglichkeiten der Materialauswahl und somit der Einsatzmöglichkeiten der erhaltenen Strukturen.