3 resultados para Mitochondria.

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Funktionelle Analyse der LC-FACS in Dictyostelium discoideum" Das Dictyostelium discoideum Gen fcsA kodiert für ein 75 kDa großes Protein. Es kann durch Homologieanyalysen der Amino-säuresequenz zu den "long-chain fatty acyl-CoA"-Synthetasen ge-rechnet werden, die lang-kettige Fettsäuren durch die kovalente Bindung von Coenzym A akti-vie-ren und damit für diverse Reak-tionen in Stoffwechsel und Molekül-Synthese der Zelle verfügbar machen. Die hier untersuchte D. discoideum LC-FACS lokalisiert als peripher assoziiertes Protein an der cytosolischen Seite der Membran von Endo-somen und kleiner Vesikel. Bereits kurz nach der Bildung in der frühen sauren Phase kann die Lokalisation der LC-FACS auf Endosomen ge-zeigt werden. Sie dissoziiert im Laufe ihrer Neutra-li-sierung und kann auf späten Endosomen, die vor ihrer Exocytose stehen nicht mehr nach-gewiesen werden. Ein Teil der kleinen die in der gesamte Zelle verteilten kleinen Vesikel zeigt eine Kolokalisation mit lysosomalen Enzymen. Trotz des intrazellulären Verteilungs-mus-ters, das eine Beteiligung dieses Pro-teins an der Endocytose nahe-legt, konnte kein signifikanter Rückgang der Pino- und Phagocytose-Rate in LC-FACS Nullmutanten beobachtet werden. Der endo-cy-to-ti-sche Transit ist in diesen Zellen etwas verlängert, außerdem zeigen die Endosomen einen deutlich erhöhten pH-Wert, was zu einer weniger effektiven Prozessierung eines lysosomalen Enzyms führt (a-Mannosidase). Die Funktion der LC-FACS ist die Aufnahme von langkettigen Fettsäuren aus dem Lumen der Endosomen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der eukaryotische Mikroorganismus Dictyostelium discoideum lebt als einzellige Amöbe solange ausreichende Nahrungsressourcen zur Verfügung stehen. Sobald Nahrungsmangel eintritt, entwickeln sich die Zellen von einem einzelligen zu einem mehrzelligen Zustand, der mit einem multizellulären Fruchtkörper abschließt. Dieser Prozess wird durch eine Reihe aufeinanderfolgender Signale organisiert, die eine differentielle Genexpression regulieren. Die Gene der Discoidin I Familie gehören zu den Ersten, die im Laufe des Wachstums-Differenzierungs-Übergangs (engl. GDT) aktiviert werden. Sie eignen sich daher vorzüglich als Marker für den Beginn der Entwicklung. Mit Hilfe einer REMI-Mutagenese und Discoidin I als molekularem Marker sind verschiedene Komponenten des Wachstums-Differenzierungs-Übergangs in unserer Arbeitsgruppe identifiziert worden (Zeng et al., 2000 A und B; Riemann und Nellen, persönliche Mitteilung). Mit demselben Ansatz wurde in der vorliegenden Arbeit eine REMI-Mutante identifiziert, die eine Fehl-Expression von Discoidin zeigte und einen axenischen Wachstumsdefekt bei 15 °C aufwies. Das Gen wurde als Homolog zum humanen Tafazzin-Gen identifiziert. Dieses Gen wurde zur Rekonstruktion des Phänotyps über homologe Rekombination erneut disruptiert, was wie erwartet zu dem zuerst beschriebenen Phänotyp führte. Folgerichtig ergab eine Überexpression des Gens in den Mutanten eine Komplementation des Phänotyps. Immunfluoreszenz-Experimente zeigten eine mitochondriale Lokalisation des Dictyostelium discoideum Taffazzin Proteins. Dass ein mitochondriales Protein in Zusammenhang mit dem Wachstums-Differenzierungs-Übergang steht, ist ein unerwarteter Befund, der aber als Hinweis darauf gewertet werden kann, dass Mitochondrien einen direkten Einfluss auf die entwicklungsspezifische Signaltransduktion ausüben. Die Taffazzin Disruptions-Mutante in Dictyostelium führte zu einem abnormalen Cardiolipin Metabolismus. Dieses Phospholipid ist ein charakteristischer Bestandteil der inneren Mitochondrienmembran und für die Funktion verschiedener Enzyme erforderlich. Unsere vorläufigen Analysen des Phospholipid-Gehalts zeigten Übereinstimmung mit Daten von Patienten mit Barth-Syndrom, einer humanen Erkrankung, bei der das Taffazzin-Gen Mutationen aufweist, und mit Hefe-Mutanten dieses Gens. Dies zeigt den Wert von Dictyostelium discoideum als einen weiteren Modelorganismus zur Untersuchung des Barth-Syndroms und zur Erprobung möglicher Therapieansätze.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to produce a variety of fluorescent diatom cell wall material as a basis for spectroscopic investigations of the influence of the photonic structure on the emission of an incorporated laser dye. This goal was achieved by the method of in vivo-fluorochromation, in which the fluorescence dyes are incorporated by the diatom cells during cell wall formation. Several fluorescent dyes (mostly rhodamines) known as strong laser dyes, were tested for a possible application within this method. The results of this work show that half of the tested rhodamines can be applied for an in vivo-fluorochromation of diatom cells. For a successful incorporation into the diatom cell wall, a relatively low toxicity to diatom cells is necessary. Replacement of the carbon acid function at the carboxyphenyl ring of the rhodamine by a methyl or ethylester function showed to convert a rhodamine of relatively low toxicity to a rhodamine leading to severe lethal effects within the cells. In contrast to their carbon acid forms, which posses a net neutral charge of the molecule, rhodamine esters exhibit a net positive charge. The enhanced toxicological effects seem to be due to an increased accumulation of positive charged rhodamines within the mitochondria, an increased hydrophobicity due to the attachment of an alkyl substituent, an increased retention time of the dyes within the mitochondria and a therefore stronger negative effect on the mitochondrial membrane bound energy processes of the diatom cell. Therefore rhodamines with a positive net charge deriving from a methyl or ethylester function at the carboxy phenyl ring instead of a carbon acid substituent showed not to be suitable for long-term investigations/ biomineralization studies of diatoms. Investigations performed on diatom species of different orders showed that rhodamine 19, rhodamine B, and rhodamine 101 can presumably be successfully applied for in vivo-fluorochromation to all diatom species. The results obtained here can help to find further laser dyes for an in vivo-fluorochromation of diatom cells and therefore for the production of fluorescent nanostructural elements for a detailed optical investigation of the diatom cell wall. First optical measurements performed on in vivo-fluorochromated cell walls did not give any hints concerning the photonic structure of the diatom cell. Cell wall parts with different nanostructural elements were investigated and by comparison of the obtained fluorescence emission spectra, no special features that might derive from photonic structural effects could be observed. Results concerning the concentration dependent shifts within the emission spectra, as well as the decrease of fluorescence intensity of the stained cell wall structures with increasing dye concentration, depict that several effects occurring by interaction of the molecules within the cell wall can have an impact on the technical application of fluorescent cell walls. It can be assumed that the investigation of the photonic crystal behaviour and the possibility to achieve laser action within the diatom cell wall can be hampered by molecular interactions. The results give hints to prevent such obstacles. Comparison of the recent findings and state of the art of in vivo-fluorochromation of diatom cell wall material, make clear that the here presented results are of importance and can offer a considerable contribution to the development and establishment of new biosilification markers, for diatoms as well as for other biosilifying organisms.