5 resultados para Minimum tillage
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
To increase the organic matter (OM) content in the soil is one main goal in arable soil management. The adoption of tillage systems with reduced tillage depth and/or frequency (reduced tillage) or of no-tillage was found to increase the concentration of soil OM compared to conventional tillage (CT; ploughing to 20-30 cm). However, the underlying processes are not yet clear and are discussed contradictorily. So far, few investigations were conducted on tillage systems with a shallow tillage depth (minimum tillage = MT; maximum tillage depth of 10 cm). A better understanding of the interactions between MT implementation and changes in OM transformation in soils is essential in order to evaluate the possible contribution of MT to a sustainable management of arable soils. The objectives of the present thesis were (i) to compare OM concentrations, microbial biomass, water-stable aggregates, and particulate OM (POM) between CT and MT soils, (ii) to estimate the temporal variability of water-stable aggregate size classes occurring in the field and the dynamics of macroaggregate (>250 µm) formation and disruption under controlled conditions, (iii) to investigate whether a lower disruption or a higher formation rate accounts for a higher occurrence of macroaggregates under MT compared to CT, (iv) to determine which fraction is the major agent for storing the surplus of OM found under MT compared to CT, and (v) to observe the early OM transformation after residue incorporation in different tillage systems simulated. Two experimental sites (Garte-Süd and Hohes Feld) near Göttingen, Germany, were investigated. Soil type of both sites was a Haplic Luvisol. Since about 40 years, both sites receive MT by a rotary harrow (to 5-8 cm depth) and CT by a plough (to 25 cm depth). Surface soils (0-5 cm) and subsoils (10-20 cm) of two sampling dates (after fallow and directly after tillage) were investigated for concentrations of organic C (Corg) and total N (N), different water-stable aggregate size classes, different density fractions (for the sampling date after fallow only), microbial biomass, and for biochemically stabilized Corg and N (by acid hydrolysis; for the sampling date after tillage only). In addition, two laboratory incubations were performed under controlled conditions: Firstly, MT and CT soils were incubated (28 days at 22°C) as bulk soil and with destroyed macroaggregates in order to estimate the importance of macroaggregates for the physical protection of the very labile OM against mineralization. Secondly, in a microcosm experiment simulating MT and CT systems with soil <250 µm and with 15N and 13C labelled maize straw incorporated to different depths, the mineralization, the formation of new macroaggregates, and the partitioning of the recently added C and N were followed (28 days at 15°C). Forty years of MT regime led to higher concentrations of microbial biomass and of Corg and N compared to CT, especially in the surface soil. After fallow and directly after tillage, a higher proportion of water-stable macroaggregates rich in OM was found in the MT (36% and 66%, respectively) than in the CT (19% and 47%, respectively) surface soils of both sites (data shown are of the site Garte-Süd only). The subsoils followed the same trend. For the sampling date after fallow, no differences in the POM fractions were found but there was more OM associated to the mineral fraction detected in the MT soils. A large temporal variability was observed for the abundance of macroaggregates. In the field and in the microcosm simulations, macroaggregates were found to have a higher formation rate after the incorporation of residues under MT than under CT. Thus, the lower occurrence of macroaggregates in CT soils cannot be attributed to a higher disruption but to a lower formation rate. A higher rate of macroaggregate formation in MT soils may be due to (i) the higher concentrated input of residues in the surface soil and/or (ii) a higher abundance of fungal biomass in contrast to CT soils. Overall, as a location of storage of the surplus of OM detected under MT compared to CT, water-stable macroaggregates were found to play a key role. In the incubation experiment, macroaggregates were not found to protect the very labile OM against mineralization. Anyway, the surplus of OM detected after tillage in the MT soil was biochemically degradable. MT simulations in the microcosm experiment showed a lower specific respiration and a less efficient translocation of recently added residues than the CT simulations. Differences in the early processes of OM translocation between CT and MT simulations were attributed to a higher residue to soil ratio and to a higher proportion of fungal biomass in the MT simulations. Overall, MT was found to have several beneficial effects on the soil structure and on the storage of OM, especially in the surface soil. Furthermore, it was concluded that the high concentration of residues in the surface soil of MT may alter the processes of storage and decomposition of OM. In further investigations, especially analysis of the residue-soil-interface and of effects of the depth of residue incorporation should be emphasised. Moreover, further evidence is needed on differences in the microbial community between CT and MT soils.
Resumo:
In most agroecosystems, nitrogen (N) is the most important nutrient limiting plant growth. One management strategy that affects N cycling and N use efficiency (NUE) is conservation agriculture (CA), an agricultural system based on a combination of minimum tillage, crop residue retention and crop rotation. Available results on the optimization of NUE in CA are inconsistent and studies that cover all three components of CA are scarce. Presently, CA is promoted in the Yaqui Valley in Northern Mexico, the country´s major wheat-producing area in which from 1968 to 1995, fertilizer application rates for the cultivation of irrigated durum wheat (Triticum durum L.) at 6 t ha-1 increased from 80 to 250 kg ha-1, demonstrating the high intensification potential in this region. Given major knowledge gaps on N availability in CA this thesis summarizes the current knowledge of N management in CA and provides insights in the effects of tillage practice, residue management and crop rotation on wheat grain quality and N cycling. Major aims of the study were to identify N fertilizer application strategies that improve N use efficiency and reduce N immobilization in CA with the ultimate goal to stabilize cereal yields, maintain grain quality, minimize N losses into the environment and reduce farmers’ input costs. Soil physical and chemical properties in CA were measured and compared with those in conventional systems and permanent beds with residue burning focusing on their relationship to plant N uptake and N cycling in the soil and how they are affected by tillage and N fertilizer timing, method and doses. For N fertilizer management, we analyzed how placement, time and amount of N fertilizer influenced yield and quality parameters of durum and bread wheat in CA systems. Overall, grain quality parameters, in particular grain protein concentration decreased with zero-tillage and increasing amount of residues left on the field compared with conventional systems. The second part of the dissertation provides an overview of applied methodologies to measure NUE and its components. We evaluated the methodology of ion exchange resin cartridges under irrigated, intensive agricultural cropping systems on Vertisols to measure nitrate leaching losses which through drainage channels ultimately end up in the Sea of Cortez where they lead to algae blooming. A throughout analysis of N inputs and outputs was conducted to calculate N balances in three different tillage-straw systems. As fertilizer inputs are high, N balances were positive in all treatments indicating the risk of N leaching or volatilization during or in subsequent cropping seasons and during heavy rain fall in summer. Contrary to common belief, we did not find negative effects of residue burning on soil nutrient status, yield or N uptake. A labeled fertilizer experiment with urea 15N was implemented in micro-plots to measure N fertilizer recovery and the effects of residual fertilizer N in the soil from summer maize on the following winter crop wheat. Obtained N fertilizer recovery rates for maize grain were with an average of 11% very low for all treatments.
Resumo:
An improved understanding of soil organic carbon (Corg) dynamics in interaction with the mechanisms of soil structure formation is important in terms of sustainable agriculture and reduction of environmental costs of agricultural ecosystems. However, information on physical and chemical processes influencing formation and stabilization of water stable aggregates in association with Corg sequestration is scarce. Long term soil experiments are important in evaluating open questions about management induced effects on soil Corg dynamics in interaction with soil structure formation. The objectives of the present thesis were: (i) to determine the long term impacts of different tillage treatments on the interaction between macro aggregation (>250 µm) and light fraction (LF) distribution and on C sequestration in plots differing in soil texture and climatic conditions. (ii) to determine the impact of different tillage treatments on temporal changes in the size distribution of water stable aggregates and on macro aggregate turnover. (iii) to evaluate the macro aggregate rebuilding in soils with varying initial Corg contents, organic matter (OM) amendments and clay contents in a short term incubation experiment. Soil samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth from up to four commercially used fields located in arable loess regions of eastern and southern Germany after 18-25 years of different tillage treatments with almost identical experimental setups per site. At each site, one large field with spatially homogenous soil properties was divided into three plots. One of the following three tillage treatments was carried in each plot: (i) Conventional tillage (CT) with annual mouldboard ploughing to 25-30 cm (ii) mulch tillage (MT) with a cultivator or disc harrow 10-15 cm deep, and (iii) no tillage (NT) with direct drilling. The crop rotation at each site consisted of sugar beet (Beta vulgaris L.) - winter wheat (Triticum aestivum L.) - winter wheat. Crop residues were left on the field and crop management was carried out following the regional standards of agricultural practice. To investigate the above mentioned research objectives, three experiments were conducted: Experiment (i) was performed with soils sampled from four sites in April 2010 (wheat stand). Experiment (ii) was conducted with soils sampled from three sites in April 2010, September 2011 (after harvest or sugar beet stand), November 2011 (after tillage) and April 2012 (bare soil or wheat stand). An incubation study (experiment (iii)) was performed with soil sampled from one site in April 2010. Based on the aforementioned research objectives and experiments the main findings were: (i) Consistent results were found between the four long term tillage fields, varying in texture and climatic conditions. Correlation analysis of the yields of macro aggregate against the yields of free LF ( ≤1.8 g cm-3) and occluded LF, respectively, suggested that the effective litter translocation in higher soil depths and higher litter input under CT and MT compensated in the long term the higher physical impact by tillage equipment than under NT. The Corg stocks (kg Corg m−2) in 522 kg soil, based on the equivalent soil mass approach (CT: 0–40 cm, MT: 0–38 cm, NT: 0–36 cm) increased in the order CT (5.2) = NT (5.2) < MT (5.7). Significantly (p ≤ 0.05) highest Corg stocks under MT were probably a result of high crop yields in combination with reduced physical tillage impact and effective litter incorporation, resulting in a Corg sequestration rate of 31 g C-2 m-2 yr-1. (ii) Significantly higher yields of macro aggregates (g kg-2 soil) under NT (732-777) and MT (680-726) than under CT (542-631) were generally restricted to the 0-5 cm sampling depth for all sampling dates. Temporal changes on aggregate size distribution were only small and no tillage induced net effect was detectable. Thus, we assume that the physical impact by tillage equipment was only small or the impact was compensated by a higher soil mixing and effective litter translocation into higher soil depths under CT, which probably resulted in a high re aggregation. (iii) The short term incubation study showed that macro aggregate yields (g kg-2 soil) were higher after 28 days in soils receiving OM (121.4-363.0) than in the control soils (22.0-52.0), accompanied by higher contents of microbial biomass carbon and ergosterol. Highest soil respiration rates after OM amendments within the first three days of incubation indicated that macro aggregate formation is a fast process. Most of the rebuilt macro aggregates were formed within the first seven days of incubation (42-75%). Nevertheless, it was ongoing throughout the entire 28 days of incubation, which was indicated by higher soil respiration rates at the end of the incubation period in OM amended soils than in the control soils. At the same time, decreasing carbon contents within macro aggregates over time indicated that newly occluded OM within the rebuilt macro aggregates served as Corg source for microbial biomass. The different clay contents played only minor role in macro aggregate formation under the particular conditions of the incubation study. Overall, no net changes on macro aggregation were identified in the short term. Furthermore, no indications for an effective Corg sequestration on the long term under NT in comparison to CT were found. The interaction of soil disturbance, litter distribution and the fast re aggregation suggested that a distinct steady state per tillage treatment in terms of soil aggregation was established. However, continuous application of MT with a combination of reduced physical tillage impact and effective litter incorporation may offer some potential in improving the soil structure and may therefore prevent incorporated LF from rapid decomposition and result in a higher C sequestration on the long term.
Resumo:
Agricultural intensification has a strong impact on level of soil organic matter (SOM), microbial biomass stocks and microbial community structure in agro-ecosystems. The size of the microbial necromass C pool could be about 40 times that of the living microbial biomass C pool in soils. Due to the specificity, amino sugar analysis gives more important information on the relative contribution of fungal and bacterial residues to C sequestration potential of soils. Meanwhile, the relationship between microbial biomass and microbial necromass in soil and its ecological significance on SOM are not fully understood and likely to be very complex in grassland soils. This thesis focuses on the effects of tillage, grassland conversion intensities and fertilisation on microbial biomass, residues and community structure. The combined analyses of microbial biomass and residue formation of both fungi and bacteria provided a unique opportunity to study the effect of tillage, grassland conversion and fertilisation on soil microbial dynamics. In top soil at 0-30 cm layer, a reduction in tillage intensity by the GRT and NT treatments increased the accumulation of saprotrophic fungi in comparison with the MBT treatment. In contrast, the GRT and NT treatments promoted AMF at the expense of saprotrophic fungi in the bottom soil layer at 30-40 cm depth. The negative relationship between the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio points to the importance of the relationship between saprotrophic fungi and biotrophic AMF for tillage-induced changes in microbial turnover of SOC. One-season cultivation of winter wheat with two tillage events led to a significant loss in SOC and microbial biomass C stocks at 0-40 cm depth in comparison with the permanent grassland, even 5 years after the tillage event. However, the tillage induced loss in microbial biomass C was roughly 40% less in the long-term than in the short-term of the current experiment, indicating a recovery process during grassland restoration. In general, mould board tillage and grassland conversion to maize monoculture promoted saprotrophic fungi at the expense of biotrophic AMF and bacteria compared to undisturbed grassland soils. Slurry application promoted bacterial residues as indicated by the decreases in both, the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio. In addition, the lost microbial functional diversity due to tillage and maize monoculture was restored by slurry application both in arable and grassland soils. I conclude that the microbial biomass C/S ratio can be used as an additional indicator for a shift in microbial community. The strong relationships between microbial biomass and necromass indices points to the importance of saprotrophic fungi and biotrophic AMF for agricultural management induced effects on microbial turnover and ecosystem C storage. Quantitative information on exact biomass estimates of these two important fungal groups in soil is inevitably necessary to understand their different roles in SOM dynamics.
Resumo:
Es ist bekannt, dass die Umsatzdynamik der organischen Substanz von der Bodenbearbeitungsintensität abhängt. Bis jetzt sind nur wenige Daten zum Einfluss der Bearbeitungsintensität und des Zwischenfruchtanbaus auf C-, N-, und P-Dynamik im Ober- (0-5 cm Tiefe) und Unterboden (5-25 cm Tiefe) von Lössböden verfügbar. Hauptziele dieser Arbeit waren die (i) Quantifizierung des Einflusses von verschiedenen langzeitig durchgeführten Bearbeitungssystemen auf labile, intermediäre, und passive C- und N-Pools; (ii) Quantifizierung des Einflusses dieser Systeme auf P-Fraktionen mit unterschiedlicher Verfügbarkeit für die Pflanzenaufnahme; (iii) Quantifizierung des Einflusses des Zwischenfruchtanbaus in Verbindung mit einer unterschiedlichen Einarbeitungstiefe der der Zwischenfrüchte auf mineralisierbares C und N. Die Ergebnisse des 1. und 2. Teilexperiments basieren auf Untersuchungen von 4 Langzeitfeldexperimenten (LFE) in Ost- und Süddeutschland, die zwischen 1990 und 1997 durch das Institut für Zuckerrübenforschung angelegt wurden. Jedes LFE umfasst 3 Bearbeitungssysteme: konventionelle Bearbeitung (CT), reduzierte Bearbeitung (RT) und Direktsaat (NT). Die Ergebnisse des 3. Teilexperiments basieren auf einem Inkubationsexperiment. Entsprechend den Hauptfragestellungen wurden folgende Untersuchungsergebnisse beschrieben: (i) Im Oberboden von NT wurden höhere labile C-Vorräte gefunden (C: 1.76 t ha-1, N: 166 kg ha-1), verglichen mit CT (C: 0.44 t ha-1, N: 52 kg ha-1). Im Gegensatz dazu waren die labile- C-Vorräte höher im Unterboden von CT mit 2.68 t ha-1 verglichen zu NT mit 2 t ha-1 und RT mit 1.87 t ha-1. Die intermediären C-Vorräte betrugen 73-85% der gesamten organischen C-Vorräte, intermediäre N-Vorräte betrugen 70-95% des Gesamt-N im Ober- und Unterboden und waren vielfach größer als die labilen und passiven C- und N-Vorräte. Nur im Oberboden konnte ein Effekt der Bearbeitungsintensität auf die intermediären N-Pools mit höheren Vorräten unter NT als CT festgestellt werden. Die passiven C- und N-Pools waren eng mit den mineralischen Bodeneigenschaften verbunden und unabhängig vom Bearbeitungssystem. Insgesamt hat sich gezeigt, dass 14 bis 22 Jahre durchgängige Direktsaatverfahren nur im Oberboden zu höheren labilen C- und N-Vorräten führen, verglichen zu konventionellen Systemen. Dies lässt eine tiefenabhängige Stärke der Dynamik der organischen Bodensubstanz vermuten. (ii) Die Konzentration des Gesamt-P (Pt) im Oberboden war höher in NT (792 mg kg-1) und ~15% höher als die Pt-Konzentration in CT (691 mg kg 1). Die Abnahme der Pt-Konzentration mit zunehmender Bodentiefe war höher in NT als in CT. Dies gilt auch für die einzelnen P-Fraktionen, ausgenommen der stabilsten P-Fraktion (residual-P). Generell hatte das Bearbeitungssystem nur einen kleinen Einfluss auf die P-Konzentration mit höheren Pt-Konzentrationen in Böden unter NT als CT. Dies resultiert vermutlich aus der flacheren Einarbeitung der Pflanzenreste als in CT. (iii) Im Zwischenfruchtexperiment war der Biomassezuwachs von Senf am höchsten und nimmt in der Reihenfolge ab (oberirdischer Ertrag in t / ha): Senf (7.0 t ha-1) > Phacelia (5.7 t ha-1) > Ölrettich (4.4 t ha-1). Damit war potentiell mineralisierbares C und N am höchsten in Böden mit Senfbewuchs. Kumulative CO2- und N2O-Emissionen während der Inkubation unterschieden sich nicht signifikant zwischen den Zwischenfruchtvarianten und waren unabhängig von der Verteilung der Pflanzenreste im Boden. Die kumulativen ausgewaschenen mineralisierten N (Nmin)-Vorräte waren in den brachliegenden Böden am höchsten. Die Nmin-Vorräte waren 51-72% niedriger in den Varianten mit Zwischenfrucht und Einarbeitung verglichen zur Brache. In den Varianten ohne Einarbeitung waren die Nmin-Vorräte 36-55% niedriger verglichen zur Brache. Dies weißt auf einen deutlichen Beitrag von Zwischenfrüchten zur Reduzierung von Nitrat-Auswaschung zwischen Winter und Frühjahr hin. Insgesamt führte reduzierte Bearbeitung zu einer Sequestrierung von C und N im Boden und der Zwischenfruchtanbau führte zu reduzierten N-Verlusten. Die P-Verfügbarkeit war höher unter Direktsaat verglichen zur konventionellen Bearbeitung. Diese Ergebnisse resultieren aus den höheren Konzentrationen der OS in den reduzierten, als in den konventionellen Systemen. Die Ergebnisse zeigen deutlich das Potential von reduzierter Bearbeitung zur Sequestrierung von intermediärem C und N zur Reduzierung von klimarelevanten Treibhausgasen. Gleichzeitig steigen die Konzentrationen an pflanzenverfügaren P-Gehalten. Zwischenfrüchte führen auch zu einem Anstieg der C- und N-Vorräte im Boden, offensichtlich unabhängig von der Zwischenfruchtart.