5 resultados para Methane Consumption
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Recycling nutrients form sanitary wastes back into agricultural ecosystems offers an option to alleviate soil depletion in regions where the use of mineral fertiliser is limited. Exemplary nutrient and water cycling approaches, including collection, treatment and use of human urine, are established at Valley View University (VVU) in Greater Accra, Ghana. Concerns have been recently raised in regard to fate and impact of pharmaceutical residues in soils and interlinked environment. To evaluate in how far emerging knowledge can be transposed onto VVU, urban and rural environments in Greater Accra, spatial disease occurrence and drug consumption patterns were studied. Malaria has been found to represent the most severe health burden in Ghana, but there is also a high prevalence of infectious diseases. Drugs consumed in great quantities and in respect to their residual loads potentially problematic in the environment belong to therapeutic groups of: antibiotics, analgesics, drugs for diabetes, antimalarials, cardiovascular drugs and anthelmintics. Drug consumption revealed to be highest in urban and lowest in rural areas. At VVU the range of consumed drugs is comparable to urban areas except for the negligible use of diabetes and cardiovascular medication as well as contraceptives.
Resumo:
The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.
Resumo:
In contemporary society, green consumption is a popular concept. The life styles of people and consumption behaviors are moderated in accordance to the ‘green ideology’. The process of green consumption can be observed through social behaviors such as preference of bio foods, recycling, reusing, limiting the over consumption and using environmentally friendly transport systems. However, mainstream economic analyses on green consumption argued that consumer behaviors are due to the rational choice of individuality based on utility and self-preferences. The hypothesis of this paper on consumer behavior in green consumption is configured by discourses according to the discourse analysis.
Resumo:
Protecting the quality of children growth and development becomes a supreme qualification for the betterment of a nation. Double burden child malnutrition is emerging worldwide which might have a strong influence to the quality of child brain development and could not be paid-off on later life. Milk places a notable portion during the infancy and childhood. Thus, the deep insight on milk consumption pattern might explain the phenomenon of double burden child malnutrition correlated to the cognitive impairments. Objective: Current study is intended (1) to examine the current face of Indonesian double burden child malnutrition: a case study in Bogor, West Java, Indonesia, (2) to investigate the association of this phenomenon with child brain development, and (3) to examine the contribution of socioeconomic status and milk consumption on this phenomenon so that able to formulate some possible solutions to encounter this problem. Design: A cross-sectional study using a structured coded questionnaire was conducted among 387 children age 5-6 years old and their parents from 8 areas in Bogor, West-Java, Indonesia on November 2012 to December 2013, to record some socioeconomic status, anthropometric measurements, and history of breast feeding. Diet and probability of milk intake was assessed by two 24 h dietary recalls and food frequency questionnaire (FFQ). Usual daily milk intake was calculated using Multiple Source Method (MSM). Some brain development indicators (IQ, EQ, learning, and memory ability) using Projective Multi-phase Orientation method was also executed to learn the correlation between double burden child malnutrition and some brain development indicator. Results and conclusions: A small picture of child double burden malnutrition is shown in Bogor, West Java, Indonesia, where prevalence of Severe Acute Malnutrition (SAM) is 27.1%, Moderate Acute Malnutrition (MAM) is 24.9%, and overnutrition is 7.7%. This phenomenon proves to impair the child brain development. The malnourished children, both under- and over- nourished children have significantly (P-value<0.05) lower memory ability compared to the normal children (memory score, N; SAM = 45.2, 60; MAM = 48.5, 61; overweight = 48.4, 43; obesity = 47.9, 60; normal = 52.4, 163). The plausible reasons behind these evidences are the lack of nutrient intake during the sprout growth period on undernourished children or increasing adiposity on overnourished children might influence the growth of hippocampus area which responsible to the memory ability. Either undernutrition or overnutrition, the preventive action on this problem is preferable to avoid ongoing cognitive performance loss of the next generation. Some possible solutions for this phenomenon are promoting breast feeding initiation and exclusive breast feeding practices for infants, supporting the consumption of a normal portion of milk (250 to 500 ml per day) for children, and breaking the chain of poverty by socioeconomic improvement. And, the national food security becomes the fundamental point for the betterment of the next. In the global context, the causes of under- and over- nutrition have to be opposed through integrated and systemic approaches for a better quality of the next generation of human beings.