12 resultados para Maple Shade
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.
Resumo:
This thesis work is dedicated to use the computer-algebraic approach for dealing with the group symmetries and studying the symmetry properties of molecules and clusters. The Maple package Bethe, created to extract and manipulate the group-theoretical data and to simplify some of the symmetry applications, is introduced. First of all the advantages of using Bethe to generate the group theoretical data are demonstrated. In the current version, the data of 72 frequently applied point groups can be used, together with the data for all of the corresponding double groups. The emphasize of this work is placed to the applications of this package in physics of molecules and clusters. Apart from the analysis of the spectral activity of molecules with point-group symmetry, it is demonstrated how Bethe can be used to understand the field splitting in crystals or to construct the corresponding wave functions. Several examples are worked out to display (some of) the present features of the Bethe program. While we cannot show all the details explicitly, these examples certainly demonstrate the great potential in applying computer algebraic techniques to study the symmetry properties of molecules and clusters. A special attention is placed in this thesis work on the flexibility of the Bethe package, which makes it possible to implement another applications of symmetry. This implementation is very reasonable, because some of the most complicated steps of the possible future applications are already realized within the Bethe. For instance, the vibrational coordinates in terms of the internal displacement vectors for the Wilson's method and the same coordinates in terms of cartesian displacement vectors as well as the Clebsch-Gordan coefficients for the Jahn-Teller problem are generated in the present version of the program. For the Jahn-Teller problem, moreover, use of the computer-algebraic tool seems to be even inevitable, because this problem demands an analytical access to the adiabatic potential and, therefore, can not be realized by the numerical algorithm. However, the ability of the Bethe package is not exhausted by applications, mentioned in this thesis work. There are various directions in which the Bethe program could be developed in the future. Apart from (i) studying of the magnetic properties of materials and (ii) optical transitions, interest can be pointed out for (iii) the vibronic spectroscopy, and many others. Implementation of these applications into the package can make Bethe a much more powerful tool.
Resumo:
In der vorliegenden Arbeit wurde gezeigt, wie mit Hilfe der atomaren Vielteilchenstörungstheorie totale Energien und auch Anregungsenergien von Atomen und Ionen berechnet werden können. Dabei war es zunächst erforderlich, die Störungsreihen mit Hilfe computeralgebraischer Methoden herzuleiten. Mit Hilfe des hierbei entwickelten Maple-Programmpaketes APEX wurde dies für geschlossenschalige Systeme und Systeme mit einem aktiven Elektron bzw. Loch bis zur vierten Ordnung durchgeführt, wobei die entsprechenden Terme aufgrund ihrer großen Anzahl hier nicht wiedergegeben werden konnten. Als nächster Schritt erfolgte die analytische Winkelreduktion unter Anwendung des Maple-Programmpaketes RACAH, was zu diesem Zwecke entsprechend angepasst und weiterentwickelt wurde. Erst hier wurde von der Kugelsymmetrie des atomaren Referenzzustandes Gebrauch gemacht. Eine erhebliche Vereinfachung der Störungsterme war die Folge. Der zweite Teil dieser Arbeit befasst sich mit der numerischen Auswertung der bisher rein analytisch behandelten Störungsreihen. Dazu wurde, aufbauend auf dem Fortran-Programmpaket Ratip, ein Dirac-Fock-Programm für geschlossenschalige Systeme entwickelt, welches auf der in Kapitel 3 dargestellen Matrix-Dirac-Fock-Methode beruht. Innerhalb dieser Umgebung war es nun möglich, die Störungsterme numerisch auszuwerten. Dabei zeigte sich schnell, dass dies nur dann in einem angemessenen Zeitrahmen stattfinden kann, wenn die entsprechenden Radialintegrale im Hauptspeicher des Computers gehalten werden. Wegen der sehr hohen Anzahl dieser Integrale stellte dies auch hohe Ansprüche an die verwendete Hardware. Das war auch insbesondere der Grund dafür, dass die Korrekturen dritter Ordnung nur teilweise und die vierter Ordnung gar nicht berechnet werden konnten. Schließlich wurden die Korrelationsenergien He-artiger Systeme sowie von Neon, Argon und Quecksilber berechnet und mit Literaturwerten verglichen. Außerdem wurden noch Li-artige Systeme, Natrium, Kalium und Thallium untersucht, wobei hier die niedrigsten Zustände des Valenzelektrons betrachtet wurden. Die Ionisierungsenergien der superschweren Elemente 113 und 119 bilden den Abschluss dieser Arbeit.
Resumo:
Yacon (Smallanthus sonchifolius [Poepp. & Endl.] H. Robinson) is an under-exploited native root crop of the Andes, which stores oligofructans (fructo-oligosaccharides, FOS) as its main component of dry matter (DM). FOS are of increasing economic interest because of their low caloric value in human diets and bifidogenic benefits on colon health. Two on-farm experiments were conducted to: (i) determine the effect of shaded, short-term storage at 1990 and 2930 m a.s.l. in the Andean highlands; and (ii) address the effects of a traditional sunlight exposure (‘sunning’) on the carbohydrate composition in the DM of tuberous yacon roots. After a 6-day shade storage FOS concentrations were smaller at the lower (36–48% of DM) than at the higher altitude (39–58% of DM). After 12 days FOS concentrations were nearly equal at both sites (27–39% of DM). The concentration of free sugars (fructose, glucose, sucrose) increased accordingly from 29–34 to 48–52%. During the 6-day sunning experiment FOS concentrations decreased from 50–62 to 29–44% and free sugars increased from 29–34 to 45–51%. The results indicate that partial hydrolysis of oligofructans starts shortly after harvest. Storage in highland environments should wherever possible exploit the cooler temperatures at higher altitudes. Sunning of yacon’s tuberous roots effectively reduces much of the roots’ water content, in this experiment 40%, and thus allows energy to be saved if yacon is processed into dehydrated products.
Resumo:
During recent years, quantum information processing and the study of N−qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing efficient quantum information protocols, such as quantum key distribution, teleportation or quantum computation, however, these investigations also revealed a great deal of difficulties which still need to be resolved in practise. Quantum information protocols rely on the application of unitary and non–unitary quantum operations that act on a given set of quantum mechanical two-state systems (qubits) to form (entangled) states, in which the information is encoded. The overall system of qubits is often referred to as a quantum register. Today the entanglement in a quantum register is known as the key resource for many protocols of quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. To facilitate the simulation of such N−qubit quantum systems and the analysis of their entanglement properties, we have developed the Feynman program. The program package provides all necessary tools in order to define and to deal with quantum registers, quantum gates and quantum operations. Using an interactive and easily extendible design within the framework of the computer algebra system Maple, the Feynman program is a powerful toolbox not only for teaching the basic and more advanced concepts of quantum information but also for studying their physical realization in the future. To this end, the Feynman program implements a selection of algebraic separability criteria for bipartite and multipartite mixed states as well as the most frequently used entanglement measures from the literature. Additionally, the program supports the work with quantum operations and their associated (Jamiolkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. As an application of the developed tools we further present two case studies in which the entanglement of two atomic processes is investigated. In particular, we have studied the change of the electron-ion spin entanglement in atomic photoionization and the photon-photon polarization entanglement in the two-photon decay of hydrogen. The results show that both processes are, in principle, suitable for the creation and control of entanglement. Apart from process-specific parameters like initial atom polarization, it is mainly the process geometry which offers a simple and effective instrument to adjust the final state entanglement. Finally, for the case of the two-photon decay of hydrogenlike systems, we study the difference between nonlocal quantum correlations, as given by the violation of the Bell inequality and the concurrence as a true entanglement measure.
Resumo:
Die q-Analysis ist eine spezielle Diskretisierung der Analysis auf einem Gitter, welches eine geometrische Folge darstellt, und findet insbesondere in der Quantenphysik eine breite Anwendung, ist aber auch in der Theorie der q-orthogonalen Polynome und speziellen Funktionen von großer Bedeutung. Die betrachteten mathematischen Objekte aus der q-Welt weisen meist eine recht komplizierte Struktur auf und es liegt daher nahe, sie mit Computeralgebrasystemen zu behandeln. In der vorliegenden Dissertation werden Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen vorgestellt. Alle Algorithmen sind in dem Maple-Package qFPS, welches integraler Bestandteil der Arbeit ist, implementiert. Nachdem in den ersten beiden Kapiteln Grundlagen geschaffen werden, werden im dritten Kapitel Algorithmen präsentiert, mit denen man zu einer q-holonomen Funktion q-holonome Rekursionsgleichungen durch Kenntnis derer q-Shifts aufstellen kann. Operationen mit q-holonomen Rekursionen werden ebenfalls behandelt. Im vierten Kapitel werden effiziente Methoden zur Bestimmung polynomialer, rationaler und q-hypergeometrischer Lösungen von q-holonomen Rekursionen beschrieben. Das fünfte Kapitel beschäftigt sich mit q-hypergeometrischen Potenzreihen bzgl. spezieller Polynombasen. Wir formulieren einen neuen Algorithmus, der zu einer q-holonomen Rekursionsgleichung einer q-hypergeometrischen Reihe mit nichttrivialem Entwicklungspunkt die entsprechende q-holonome Rekursionsgleichung für die Koeffizienten ermittelt. Ferner können wir einen neuen Algorithmus angeben, der umgekehrt zu einer q-holonomen Rekursionsgleichung für die Koeffizienten eine q-holonome Rekursionsgleichung der Reihe bestimmt und der nützlich ist, um q-holonome Rekursionen für bestimmte verallgemeinerte q-hypergeometrische Funktionen aufzustellen. Mit Formulierung des q-Taylorsatzes haben wir schließlich alle Zutaten zusammen, um das Hauptergebnis dieser Arbeit, das q-Analogon des FPS-Algorithmus zu erhalten. Wolfram Koepfs FPS-Algorithmus aus dem Jahre 1992 bestimmt zu einer gegebenen holonomen Funktion die entsprechende hypergeometrische Reihe. Wir erweitern den Algorithmus dahingehend, dass sogar Linearkombinationen q-hypergeometrischer Potenzreihen bestimmt werden können. ________________________________________________________________________________________________________________
Resumo:
The traditional control of Imperata brasiliensis grasslands used by farmers in the Peruvian Amazon is to burn the grass. The objective of this study was to compare different methods of short-term control. Biological, mechanical, chemical and traditional methods of control were compared. Herbicide spraying and manual weeding have shown to be very effective in reducing above- and below-ground biomass growth in the first 45 days after slashing the grass, with effects persisting in the longer term, but both are expensive methods. Shading seems to be less effective in the short-term, whereas it influences the Imperata growth in the longer term. After one year shading, glyphosate application and weeding significantly reduced aboveground biomass by 94, 67 and 53%; and belowground biomass by 76, 65 and 58%, respectively, compared to control. We also found a significant decrease of Imperata rhizomes in soil during time under shading. Burning has proved to have no significant effect on Imperata growth. The use of shade trees in a kind of agroforestry system could be a suitable method for small farmers to control Imperata grasslands.
Resumo:
In recent times, increased emphasis has been placed on diversifying the types of trees to shade cacao (Theobroma cacao L.) and to achieve additional services. Agroforestry systems that include profitable and native timber trees are a viable alternative but it is necessary to understand the growth characteristics of these species under different environmental conditions. Thus, timber tree species selection should be based on plant responses to biotic and abiotic factors. The aims of this study were (1) to evaluate growth rates and leaf area indices of the four commercial timber species: Cordia thaisiana, Cedrela odorata, Swietenia macrophylla and Tabebuia rosea in conjunction with incidence of insect attacks and (2) to compare growth rates of four Venezuelan Criollo cacao cultivars planted under the shade of these four timber species during the first 36 months after establishment. Parameters monitored in timber trees were: survival rates, growth rates expressed as height and diameter at breast height and leaf area index. In the four Cacao cultivars: height and basal diameter. C. thaisiana and C. odorata had the fastest growth and the highest survival rates. Growth rates of timber trees will depend on their susceptibility to insect attacks as well as to total leaf area. All cacao cultivars showed higher growth rates under the shade of C. odorata. Growth rates of timber trees and cacao cultivars suggest that combinations of cacao and timber trees are a feasible agroforestry strategy in Venezuela.
Resumo:
A large class of special functions are solutions of systems of linear difference and differential equations with polynomial coefficients. For a given function, these equations considered as operator polynomials generate a left ideal in a noncommutative algebra called Ore algebra. This ideal with finitely many conditions characterizes the function uniquely so that Gröbner basis techniques can be applied. Many problems related to special functions which can be described by such ideals can be solved by performing elimination of appropriate noncommutative variables in these ideals. In this work, we mainly achieve the following: 1. We give an overview of the theoretical algebraic background as well as the algorithmic aspects of different methods using noncommutative Gröbner elimination techniques in Ore algebras in order to solve problems related to special functions. 2. We describe in detail algorithms which are based on Gröbner elimination techniques and perform the creative telescoping method for sums and integrals of special functions. 3. We investigate and compare these algorithms by illustrative examples which are performed by the computer algebra system Maple. This investigation has the objective to test how far noncommutative Gröbner elimination techniques may be efficiently applied to perform creative telescoping.
Resumo:
The demand for biomass for bioenergy has increased rapidly in industrialized countries in the recent years. Biogenic energy carriers are known to reduce CO2 emissions. However, the resource-inefficient production of biomass often caused negative impacts on the environment, e.g. biodiversity losses, nitrate leaching, and erosion. The detrimental effects evolved mainly from annual crops. Therefore, the aim of modern bioenergy cropping systems is to combine yield stability and environmental benefits by the establishment of mixed-cropping systems. A particular emphasis is on perennial crops which are perceived as environmentally superior to annual crops. Agroforestry systems represent such mixed perennial cropping systems and consist of a mix of trees and arable crops or grassland within the same area of land. Agroforestry practices vary across the globe and alley cropping is a type of agroforestry system which is well adapted to the temperate zone, with a high degree of mechanization. Trees are planted in rows and crops are planted in the alleyways, which facilitates their management by machinery. This study was conducted to examine a young alley cropping system of willows and two grassland mixtures for bioenergy provision under temperate climate conditions. The first part of the thesis identified possible competition effects between willows and the two grassland mixtures. Since light seemed to be the factor most affecting the yield performance of the understory in temperate agroforestry systems, a biennial in situ artificial shade experiment was established over a separate clover-grass stand to quantify the effects of shade. Data to possible below- and aboveground interactions among willows and the two grassland mixtures and their effects on productivity, sward composition, and quality were monitored along a tree-grassland interface within the alleys. In the second part, productivity of the alley cropping system was examined on a triennial time frame and compared to separate grassland and willow stands as controls. Three different conversion technologies (combustion of hay, integrated generation of solid fuel and biogas from biomass, whole crop digestion) were applied to grassland biomass as feedstock and analyzed for its energetic potential. The energetic potential of willow wood chips was calculated by applying combustion as conversion technique. Net energy balances of separate grassland stands, agroforestry and pure willow stands evaluated their energy efficiency. Results of the biennial artificial shade experiment showed that severe shade (80 % light reduction) halved grassland productivity on average compared to a non-shaded control. White clover as heliophilous plant responded sensitively to limited radiation and its dry matter contribution in the sward decreased with increasing shade, whereas non-leguminous forbs (mainly segetal species) benefited. Changes in nutritive quality could not be confirmed by this experiment. Through the study on interactions within the alleys of the young agroforestry system it was possible to outline changes of incident light, soil temperature and sward composition of clover-grass along the tree-grassland interface. Nearly no effects of trees on precipitation, soil moisture and understory productivity occurred along the interface during the biennial experiment. Considering the results of the productivity and the net energy yield alley cropping system had lower than pure grassland stands, irrespective of the grassland seed mixture or fertilization, but was higher than that for pure willow stands. The comparison of three different energetic conversion techniques for the grassland biomass showed highest net energy yields for hay combustion, whereas the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion performed similarly. However, due to the low fuel quality of hay, its direct combustion cannot be recommended as a viable conversion technique, whereas IFBB fuels were of a similar quality to wood chip from willow.
Resumo:
Es ist allgemein bekannt, dass sich zwei gegebene Systeme spezieller Funktionen durch Angabe einer Rekursionsgleichung und entsprechend vieler Anfangswerte identifizieren lassen, denn computeralgebraisch betrachtet hat man damit eine Normalform vorliegen. Daher hat sich die interessante Forschungsfrage ergeben, Funktionensysteme zu identifizieren, die über ihre Rodriguesformel gegeben sind. Zieht man den in den 1990er Jahren gefundenen Zeilberger-Algorithmus für holonome Funktionenfamilien hinzu, kann die Rodriguesformel algorithmisch in eine Rekursionsgleichung überführt werden. Falls die Funktionenfamilie überdies hypergeometrisch ist, sogar laufzeiteffizient. Um den Zeilberger-Algorithmus überhaupt anwenden zu können, muss es gelingen, die Rodriguesformel in eine Summe umzuwandeln. Die vorliegende Arbeit beschreibt die Umwandlung einer Rodriguesformel in die genannte Normalform für den kontinuierlichen, den diskreten sowie den q-diskreten Fall vollständig. Das in Almkvist und Zeilberger (1990) angegebene Vorgehen im kontinuierlichen Fall, wo die in der Rodriguesformel auftauchende n-te Ableitung über die Cauchysche Integralformel in ein komplexes Integral überführt wird, zeigt sich im diskreten Fall nun dergestalt, dass die n-te Potenz des Vorwärtsdifferenzenoperators in eine Summenschreibweise überführt wird. Die Rekursionsgleichung aus dieser Summe zu generieren, ist dann mit dem diskreten Zeilberger-Algorithmus einfach. Im q-Fall wird dargestellt, wie Rekursionsgleichungen aus vier verschiedenen q-Rodriguesformeln gewonnen werden können, wobei zunächst die n-te Potenz der jeweiligen q-Operatoren in eine Summe überführt wird. Drei der vier Summenformeln waren bislang unbekannt. Sie wurden experimentell gefunden und per vollständiger Induktion bewiesen. Der q-Zeilberger-Algorithmus erzeugt anschließend aus diesen Summen die gewünschte Rekursionsgleichung. In der Praxis ist es sinnvoll, den schnellen Zeilberger-Algorithmus anzuwenden, der Rekursionsgleichungen für bestimmte Summen über hypergeometrische Terme ausgibt. Auf dieser Fassung des Algorithmus basierend wurden die Überlegungen in Maple realisiert. Es ist daher sinnvoll, dass alle hier aufgeführten Prozeduren, die aus kontinuierlichen, diskreten sowie q-diskreten Rodriguesformeln jeweils Rekursionsgleichungen erzeugen, an den hypergeometrischen Funktionenfamilien der klassischen orthogonalen Polynome, der klassischen diskreten orthogonalen Polynome und an der q-Hahn-Klasse des Askey-Wilson-Schemas vollständig getestet werden. Die Testergebnisse liegen tabellarisch vor. Ein bedeutendes Forschungsergebnis ist, dass mit der im q-Fall implementierten Prozedur zur Erzeugung einer Rekursionsgleichung aus der Rodriguesformel bewiesen werden konnte, dass die im Standardwerk von Koekoek/Lesky/Swarttouw(2010) angegebene Rodriguesformel der Stieltjes-Wigert-Polynome nicht korrekt ist. Die richtige Rodriguesformel wurde experimentell gefunden und mit den bereitgestellten Methoden bewiesen. Hervorzuheben bleibt, dass an Stelle von Rekursionsgleichungen analog Differential- bzw. Differenzengleichungen für die Identifikation erzeugt wurden. Wie gesagt gehört zu einer Normalform für eine holonome Funktionenfamilie die Angabe der Anfangswerte. Für den kontinuierlichen Fall wurden umfangreiche, in dieser Gestalt in der Literatur noch nie aufgeführte Anfangswertberechnungen vorgenommen. Im diskreten Fall musste für die Anfangswertberechnung zur Differenzengleichung der Petkovsek-van-Hoeij-Algorithmus hinzugezogen werden, um die hypergeometrischen Lösungen der resultierenden Rekursionsgleichungen zu bestimmen. Die Arbeit stellt zu Beginn den schnellen Zeilberger-Algorithmus in seiner kontinuierlichen, diskreten und q-diskreten Variante vor, der das Fundament für die weiteren Betrachtungen bildet. Dabei wird gebührend auf die Unterschiede zwischen q-Zeilberger-Algorithmus und diskretem Zeilberger-Algorithmus eingegangen. Bei der praktischen Umsetzung wird Bezug auf die in Maple umgesetzten Zeilberger-Implementationen aus Koepf(1998/2014) genommen. Die meisten der umgesetzten Prozeduren werden im Text dokumentiert. Somit wird ein vollständiges Paket an Algorithmen bereitgestellt, mit denen beispielsweise Formelsammlungen für hypergeometrische Funktionenfamilien überprüft werden können, deren Rodriguesformeln bekannt sind. Gleichzeitig kann in Zukunft für noch nicht erforschte hypergeometrische Funktionenklassen die beschreibende Rekursionsgleichung erzeugt werden, wenn die Rodriguesformel bekannt ist.
Resumo:
In Colombia coffee production is facing risks due to an increase in the variability and amount of rainfall, which may alter hydrological cycles and negatively influence yield quality and quantity. Shade trees in coffee plantations, however, are known to produce ecological benefits, such as intercepting rainfall and lowering its velocity, resulting in a reduced net-rainfall and higher water infiltration. In this case study, we measured throughfall and soil hydrological properties in four land use systems in Cauca, Colombia, that differed in stand structural parameters: shaded coffee, unshaded coffee, secondary forest and pasture. We found that throughfall was rather influenced by stand structural characteristics than by rainfall intensity. Lower throughfall was recorded in the shaded coffee compared to the other systems when rain gauges were placed at a distance of 1.0 m to the shade tree. The variability of throughfall was high in the shaded coffee, which was due to different canopy characteristics and irregular arrangements of shade tree species. Shaded coffee and secondary forest resembled each other in soil structural parameters, with an increase in saturated hydraulic conductivity and microporosity, whereas bulk density and macroporosity decreased, compared to the unshaded coffee and pasture. In this context tree-covered systems indicate a stronger resilience towards changing rainfall patterns, especially in mountainous areas where coffee is cultivated.