3 resultados para Management of Nebraska Soils

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To increase the organic matter (OM) content in the soil is one main goal in arable soil management. The adoption of tillage systems with reduced tillage depth and/or frequency (reduced tillage) or of no-tillage was found to increase the concentration of soil OM compared to conventional tillage (CT; ploughing to 20-30 cm). However, the underlying processes are not yet clear and are discussed contradictorily. So far, few investigations were conducted on tillage systems with a shallow tillage depth (minimum tillage = MT; maximum tillage depth of 10 cm). A better understanding of the interactions between MT implementation and changes in OM transformation in soils is essential in order to evaluate the possible contribution of MT to a sustainable management of arable soils. The objectives of the present thesis were (i) to compare OM concentrations, microbial biomass, water-stable aggregates, and particulate OM (POM) between CT and MT soils, (ii) to estimate the temporal variability of water-stable aggregate size classes occurring in the field and the dynamics of macroaggregate (>250 µm) formation and disruption under controlled conditions, (iii) to investigate whether a lower disruption or a higher formation rate accounts for a higher occurrence of macroaggregates under MT compared to CT, (iv) to determine which fraction is the major agent for storing the surplus of OM found under MT compared to CT, and (v) to observe the early OM transformation after residue incorporation in different tillage systems simulated. Two experimental sites (Garte-Süd and Hohes Feld) near Göttingen, Germany, were investigated. Soil type of both sites was a Haplic Luvisol. Since about 40 years, both sites receive MT by a rotary harrow (to 5-8 cm depth) and CT by a plough (to 25 cm depth). Surface soils (0-5 cm) and subsoils (10-20 cm) of two sampling dates (after fallow and directly after tillage) were investigated for concentrations of organic C (Corg) and total N (N), different water-stable aggregate size classes, different density fractions (for the sampling date after fallow only), microbial biomass, and for biochemically stabilized Corg and N (by acid hydrolysis; for the sampling date after tillage only). In addition, two laboratory incubations were performed under controlled conditions: Firstly, MT and CT soils were incubated (28 days at 22°C) as bulk soil and with destroyed macroaggregates in order to estimate the importance of macroaggregates for the physical protection of the very labile OM against mineralization. Secondly, in a microcosm experiment simulating MT and CT systems with soil <250 µm and with 15N and 13C labelled maize straw incorporated to different depths, the mineralization, the formation of new macroaggregates, and the partitioning of the recently added C and N were followed (28 days at 15°C). Forty years of MT regime led to higher concentrations of microbial biomass and of Corg and N compared to CT, especially in the surface soil. After fallow and directly after tillage, a higher proportion of water-stable macroaggregates rich in OM was found in the MT (36% and 66%, respectively) than in the CT (19% and 47%, respectively) surface soils of both sites (data shown are of the site Garte-Süd only). The subsoils followed the same trend. For the sampling date after fallow, no differences in the POM fractions were found but there was more OM associated to the mineral fraction detected in the MT soils. A large temporal variability was observed for the abundance of macroaggregates. In the field and in the microcosm simulations, macroaggregates were found to have a higher formation rate after the incorporation of residues under MT than under CT. Thus, the lower occurrence of macroaggregates in CT soils cannot be attributed to a higher disruption but to a lower formation rate. A higher rate of macroaggregate formation in MT soils may be due to (i) the higher concentrated input of residues in the surface soil and/or (ii) a higher abundance of fungal biomass in contrast to CT soils. Overall, as a location of storage of the surplus of OM detected under MT compared to CT, water-stable macroaggregates were found to play a key role. In the incubation experiment, macroaggregates were not found to protect the very labile OM against mineralization. Anyway, the surplus of OM detected after tillage in the MT soil was biochemically degradable. MT simulations in the microcosm experiment showed a lower specific respiration and a less efficient translocation of recently added residues than the CT simulations. Differences in the early processes of OM translocation between CT and MT simulations were attributed to a higher residue to soil ratio and to a higher proportion of fungal biomass in the MT simulations. Overall, MT was found to have several beneficial effects on the soil structure and on the storage of OM, especially in the surface soil. Furthermore, it was concluded that the high concentration of residues in the surface soil of MT may alter the processes of storage and decomposition of OM. In further investigations, especially analysis of the residue-soil-interface and of effects of the depth of residue incorporation should be emphasised. Moreover, further evidence is needed on differences in the microbial community between CT and MT soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facing growth in demand, dairy production in peri-urban areas of developing countries is changing rapidly. To characterise this development around Bamako (Mali), this study establishes a typology of dairy production systems with a special focus on animal genetic resources. The survey included 52 dairy cattle farms from six peri-urban sites. It was conducted in 2011 through two visits, in the dry and harvest seasons. The median cattle number per farm was 17 (range 5-118) and 42% of farmers owned cropland (8.3 +/- 7.3 ha, minimum 1 ha, maximum 25 ha). Feeding strategy was a crucial variable in farm characterisation, accounting for about 85% of total expenses. The use of artificial insemination and a regular veterinary follow-up were other important parameters. According to breeders’ answers, thirty genetic profiles were identified, from local purebreds to different levels of crossbreds. Purebred animals raised were Fulani Zebu (45.8%), Maure Zebu (9.2%), Holstein (3.0%), Azawak Zebu (1.3%), Mere Zebu (0.5%) and Kuri taurine (0.1%). Holstein crossbred represented 30.5% of the total number of animals (19.0% Fulani-Holstein, 11.2% Maure-Holstein and 0.3% Kuri-Holstein). Montbéliarde, Normande and Limousin crossbreds were also found (6.6%, 0.7% and 0.3%, respectively). A multivariate analysis helped disaggregate the diversity of management practices. The high diversity of situations shows the need for consideration of typological characteristics for an appropriate intervention. Although strongly anchored on local breeds, the peri-urban dairy systems included a diversity of exotic cattle, showing an uncoordinated quest of breeders for innovation. Without a public intervention, this dynamic will result in an irremediable erosion of indigenous animal genetic resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to emphasize the capacity and resilience of rural communities in regard to sustainable food security by adopting innovative approaches to irrigation. The shift from subsistence to commercial agriculture is promoted as a means to sustainable development. An analysis of the efficacy of irrigation schemes in Zimbabwe suggests that, in terms of providing sustainable agricultural production, they have neither been cost-effective nor have they provided long-term food security to their beneficiaries. This is certainly true of Shashe Scheme and most others in Beitbridge District. The Shashe Irrigation Scheme project represents a bold attempt at developing a fresh approach to the management of communal land irrigation schemes through a Private Public Community Partnership. The model illustrated represents a paradigm shift from subsistence agriculture to a system based on new technologies, market linkages and community ownership that build resilience and lead to sustainable food security and economic prosperity.