2 resultados para Madison
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The use of crop residues (CR) has been widely reported as a means of increasing crop yields across West Africa. However, little has been done to compare the magnitude and mechanisms of CR effects systematically in the different agro-ecological zones of the region. To this end, a series of field trials with millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], and maize (Zea mays L.) was conducted over a 4-yr period in the Sahelian, Sudanian, and Guinean zones of West Africa. Soils ranged in pH from 4.1 to 5.4 along a rainfall gradient from 510 to 1300 mm. Treatments in the factorial experiments were three CR rates (0,500, and 2000 kg ha^-1)and several levels of phosphorus and nitrogen. The results showed CR-induced total dry matter (TDM) increases in cereals up to 73% for the Sahel compared with a maximum of 16% in the wetter Sudanian and Guinean zones. Residue effects on weakly buffered Sahelian soils were due to improved P availability and to a protection of seedlings against wind erosion. Additional effects of CR mulching on topsoil properties in the Sahel were a decrease in peak temperatures by 4°C and increased water availability. These mulch effects on soil chemical and physical properties strongly decreased from North to South. Likely explanations for this decrease are the decline of dust deposition and wind erosion hazards, the higher soil clay content, lower air temperature, and a faster decomposition rate of mulch material with increasing rainfall from the Sahel to the Sudanian and Guinean zones.
Resumo:
The nondestructive determination of plant total dry matter (TDM) in the field is greatly preferable to the harvest of entire plots in areas such as the Sahel where small differences in soil properties may cause large differences in crop growth within short distances. Existing equipment to nondestructively determine TDM is either expensive or unreliable. Therefore, two radiometers for measuring reflected red and near-infrared light were designed, mounted on a single wheeled hand cart and attached to a differential Global Positioning System (GPS) to measure georeferenced variations in normalized difference vegetation index (NDVI) in pearl millet fields [Pennisetum glaucum (L.) R. Br.]. The NDVI measurements were then used to determine the distribution of crop TDM. The two versions of the radiometer could (i) send single NDVI measurements to the GPS data logger at distance intervals of 0.03 to 8.53 m set by the user, and (ii) collect NDVI values averaged across 0.5, 1, or 2 m. The average correlation between TDM of pearl millet plants in planting hills and their NDVI values was high (r^2 = 0.850) but varied slightly depending on solar irradiance when the instrument was calibrated. There also was a good correlation between NDVI, fractional vegetation cover derived from aerial photographs and millet TDM at harvest. Both versions of the rugged instrument appear to provide a rapid and reliable way of mapping plant growth at the field scale with a high spatial resolution and should therefore be widely tested with different crops and soil types.