2 resultados para MODEL-FREE

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work introduced the novel conception of complex coupled hybrid VCSELs for the first time. Alternating organic and inorganic layers in the lasers provide periodic variation of refractive index and optical gain, which enable single mode operation and low threshold of the VCSELs. Model calculations revealed great reduction of the lasing threshold with factors over 30, in comparison with the existing micro-cavity lasers. Tunable green VCSEL has been also designed, implemented and analyzed taking advantage of the broad photoluminescence spectra of the organics. Free standing optical thin films without compressive stress are technologically implemented. Multiple membrane stacks with air gap in between have been fabricated for the implementation of complex coupled VCSEL structures. Complex coupled hybrid VCSEL is a very promising approach to fill the gaps in the green spectral range of the semiconductor lasers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-resonant light interacting with diatomics via the polarizability anisotropy couples different rotational states and may lead to strong hybridization of the motion. The modification of shape resonances and low-energy scattering states due to this interaction can be fully captured by an asymptotic model, based on the long-range properties of the scattering (Crubellier et al 2015 New J. Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic multi-channel description are found to be approximately linear in the field intensity up to fairly large intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of such resonances by the non-resonant field. The multi-channel results furthermore indicate the dependence on field intensity to present, at least approximately, universal characteristics. Here we combine the nodal line technique to solve the asymptotic Schrödinger equation with perturbation theory. Comparing our single channel results to those obtained with the full interaction potential, we find nodal lines depending only on the field-free scattering length of the diatom to yield an approximate but universal description of the field-dressed molecule, confirming universal behavior.