2 resultados para MILK QUALITY
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Protecting the quality of children growth and development becomes a supreme qualification for the betterment of a nation. Double burden child malnutrition is emerging worldwide which might have a strong influence to the quality of child brain development and could not be paid-off on later life. Milk places a notable portion during the infancy and childhood. Thus, the deep insight on milk consumption pattern might explain the phenomenon of double burden child malnutrition correlated to the cognitive impairments. Objective: Current study is intended (1) to examine the current face of Indonesian double burden child malnutrition: a case study in Bogor, West Java, Indonesia, (2) to investigate the association of this phenomenon with child brain development, and (3) to examine the contribution of socioeconomic status and milk consumption on this phenomenon so that able to formulate some possible solutions to encounter this problem. Design: A cross-sectional study using a structured coded questionnaire was conducted among 387 children age 5-6 years old and their parents from 8 areas in Bogor, West-Java, Indonesia on November 2012 to December 2013, to record some socioeconomic status, anthropometric measurements, and history of breast feeding. Diet and probability of milk intake was assessed by two 24 h dietary recalls and food frequency questionnaire (FFQ). Usual daily milk intake was calculated using Multiple Source Method (MSM). Some brain development indicators (IQ, EQ, learning, and memory ability) using Projective Multi-phase Orientation method was also executed to learn the correlation between double burden child malnutrition and some brain development indicator. Results and conclusions: A small picture of child double burden malnutrition is shown in Bogor, West Java, Indonesia, where prevalence of Severe Acute Malnutrition (SAM) is 27.1%, Moderate Acute Malnutrition (MAM) is 24.9%, and overnutrition is 7.7%. This phenomenon proves to impair the child brain development. The malnourished children, both under- and over- nourished children have significantly (P-value<0.05) lower memory ability compared to the normal children (memory score, N; SAM = 45.2, 60; MAM = 48.5, 61; overweight = 48.4, 43; obesity = 47.9, 60; normal = 52.4, 163). The plausible reasons behind these evidences are the lack of nutrient intake during the sprout growth period on undernourished children or increasing adiposity on overnourished children might influence the growth of hippocampus area which responsible to the memory ability. Either undernutrition or overnutrition, the preventive action on this problem is preferable to avoid ongoing cognitive performance loss of the next generation. Some possible solutions for this phenomenon are promoting breast feeding initiation and exclusive breast feeding practices for infants, supporting the consumption of a normal portion of milk (250 to 500 ml per day) for children, and breaking the chain of poverty by socioeconomic improvement. And, the national food security becomes the fundamental point for the betterment of the next. In the global context, the causes of under- and over- nutrition have to be opposed through integrated and systemic approaches for a better quality of the next generation of human beings.
Resumo:
The main purpose of this study is to assess the relationship between six bioclimatic indices for cattle (temperature humidity (THI), environmental stress (ESI), equivalent temperature (ESI), heat load (HLI), modified heat load (HLInew) and respiratory rate predictor(RRP)) and fundamental milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when cows use natural pasture, with possibility for cows to choose to stay in the barn or to graze on the pasture in the pasturing system. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty estimation through resampling in the confidence intervals. To find the relationships between climate indices (THI, ETI, HLI, HLInew, ESI and RRP) and main components of cow milk (fat, protein and yield), multiple liner regression is applied. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Cross validation is used to avoid over-fitting. Based on results of investigation the effect of heat stress indices on milk compounds separately, we suggest the use of ESI and RRP in the summer and ESI in the spring. THI and HLInew are suggested for fat content and HLInew also is suggested for protein content in the spring season. The best linear models are found in spring between milk yield as predictands and THI, ESI,HLI, ETI and RRP as predictors with p-value < 0.001 and R2 0.50, 0.49. In summer, milk yield with independent variables of THI, ETI and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. It is strongly suggested that new and significant indices are needed to control critical heat stress conditions that consider more predictors of the effect of climate variability on animal products, such as sunshine duration, quality of pasture, the number of days of stress (NDS), the color of skin with attention to large black spots, and categorical predictors such as breed, welfare facility, and management system. This methodology is suggested for studies investigating the impacts of climate variability/change on food quality/security, animal science and agriculture using short term data considering uncertainty or data collection is expensive, difficult, or data with gaps.