10 resultados para MATRIX-ELEMENTS
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Der Vielelektronen Aspekt wird in einteilchenartigen Formulierungen berücksichtigt, entweder in Hartree-Fock Näherung oder unter dem Einschluß der Elektron-Elektron Korrelationen durch die Dichtefunktional Theorie. Da die Physik elektronischer Systeme (Atome, Moleküle, Cluster, Kondensierte Materie, Plasmen) relativistisch ist, habe ich von Anfang an die relativistische 4 Spinor Dirac Theorie eingesetzt, in jüngster Zeit aber, und das wird der hauptfortschritt in den relativistischen Beschreibung durch meine Promotionsarbeit werden, eine ebenfalls voll relativistische, auf dem sogenannten Minimax Prinzip beruhende 2-Spinor Theorie umgesetzt. Im folgenden ist eine kurze Beschreibung meiner Dissertation: Ein wesentlicher Effizienzgewinn in der relativistischen 4-Spinor Dirac Rechnungen konnte durch neuartige singuläre Koordinatentransformationen erreicht werden, so daß sich auch noch für das superschwere Th2 179+ hächste Lösungsgenauigkeiten mit moderatem Computer Aufwand ergaben, und zu zwei weiteren interessanten Veröffentlichungen führten (Publikationsliste). Trotz der damit bereits ermöglichten sehr viel effizienteren relativistischen Berechnung von Molekülen und Clustern blieben diese Rechnungen Größenordnungen aufwendiger als entsprechende nicht-relativistische. Diese behandeln das tatsächliche (relativitische) Verhalten elektronischer Systeme nur näherungsweise richtig, um so besser jedoch, je leichter die beteiligten Atome sind (kleine Kernladungszahl Z). Deshalb habe ich nach einem neuen Formalismus gesucht, der dem möglichst gut Rechnung trägt und trotzdem die Physik richtig relativistisch beschreibt. Dies gelingt durch ein 2-Spinor basierendes Minimax Prinzip: Systeme mit leichten Atomen sind voll relativistisch nunmehr nahezu ähnlich effizient beschrieben wie nicht-relativistisch, was natürlich große Hoffnungen für genaue (d.h. relativistische) Berechnungen weckt. Es ergab sich eine erste grundlegende Veröffentlichung (Publikationsliste). Die Genauigkeit in stark relativistischen Systemen wie Th2 179+ ist ähnlich oder leicht besser als in 4-Spinor Dirac-Formulierung. Die Vorteile der neuen Formulierung gehen aber entscheidend weiter: A. Die neue Minimax Formulierung der Dirac-Gl. ist frei von spuriosen Zuständen und hat keine positronischen Kontaminationen. B. Der Aufwand ist weit reduziert, da nur ein 1/3 der Matrix Elemente gegenüber 4-Spinor noch zu berechnen ist, und alle Matrixdimensionen Faktor 2 kleiner sind. C. Numerisch verhält sich die neue Formulierung ähnlilch gut wie die nichtrelativistische Schrödinger Gleichung (Obwohl es eine exakte Formulierung und keine Näherung der Dirac-Gl. ist), und hat damit bessere Konvergenzeigenschaften als 4-Spinor. Insbesondere die Fehlerwichtung (singulärer und glatter Anteil) ist in 2-Spinor anders, und diese zeigt die guten Extrapolationseigenschaften wie bei der nichtrelativistischen Schrödinger Gleichung. Die Ausweitung des Anwendungsbereichs von (relativistischen) 2-Spinor ist bereits in FEM Dirac-Fock-Slater, mit zwei Beispielen CO und N2, erfolgreich gemacht. Weitere Erweiterungen sind nahezu möglich. Siehe Minmax LCAO Nährung.
Resumo:
The time dependence of a heavy-ion-atom collision system is solved via a set of coupled channel equations using energy eigenvalues and matrix elements from a self-consistent field relativistic molecular many-electron Dirac-Fock-Slater calculation. Within this independent particle model we give a full many-particle interpretation by performing a small number of single-particle calculations. First results for the P(b) curves for the Ne K-hole excitation for the systems F{^8+} - Ne and F{^6+} - Ne as examples are discussed.
Resumo:
We performed ab initio calculations of many particle inclusive probabilities for the scattering system 16 MeV-S{^16+} on Ar. The solution of the time-dependent DIRAC-FOCK-SLATER-equation is achieved via a set of coupled-channel equations with energy eigenvalues and matrix elements which are given by static SCF molecular many electron calculations.
Resumo:
Ab initio fully relativistic SCF molecular calculations of energy eigenvalues as well as coupling-matrix elements are used to calculate the 1s_\sigma excitation differential cross section for Ne-Ne and Ne-O in ion-atom collisions. A relativistic perturbation treatment which allows a direct comparison with analogous non-relativistic calculations is also performed.
Resumo:
Using the single-particle amplitudes from a 20-level coupled-channel calculation with ab initio relativistic self consistent LCAO-MO Dirac-Fock-Slater energy eigenvalues and matrix elements we calculate within the frame of the inclusive probability formalism impact-parameter-dependent K-hole transfer probabilities. As an example we show results for the heavy asymmetric collision system S{^15+} on Ar for impact energies from 4.7 to 16 MeV. The inclusive probability formalism which reinstates the many-particle aspect of the collision system permits a qualitative and quantitative agreement with the experiment which is not achieved by the single-particle picture.
Resumo:
To evaluate single and double K-shell inclusive charge transfer probabilities in ion-atom collisions we solve the time-dependent Dirac equation. By expanding the timedependent wavefunction in a set of molecular basis states the time-dependent equation reduces to a set of coupled-channel equations. The energy eigenvalues and matrix elements are taken from self-consistent relativistic molecular many-electron Dirac-Fock-Slater calculations. We present many-electron inclusive probabilities for different final configurations as a function of impact parameter for single and double K-shell vacancy production in collisions of bare S on Ar.
Resumo:
Recently Itatani et al. [Nature 432, 876 (2004)] introduced the new concept of molecular orbital tomography, where high harmonic generation (HHG) is used to image electronic wave functions. We describe an alternative reconstruction form, using momentum instead of dipole matrix elements for the electron recombination step in HHG. We show that using this velocity-form reconstruction, one obtains better results than using the original length-form reconstruction. We provide numerical evidence for our claim that one has to resort to extremely short pulses to perform the reconstruction for an orbital with arbitrary symmetry. The numerical evidence is based on the exact solution of the time-dependent Schrödinger equation for 2D model systems to simulate the experiment. Furthermore we show that in the case of cylindrically symmetric orbitals, such as the N2 orbital that was reconstructed in the original work, one can obtain the full 3D wave function and not only a 2D projection of it. Vor kurzem führten Itatani et al. [Nature 432, 876 (2004)] das Konzept der Molelkülorbital-Tomographie ein. Hierbei wird die Erzeugung hoher Harmonischer verwendet, um Bilder von elektronischen Wellenfunktionen zu gewinnen. Wir beschreiben eine alternative Form der Rekonstruktion, die auf Impuls- statt Dipol-Matrixelementen für den Rekombinationsschritt bei der Erzeugung der Harmonischen basiert. Wir zeigen, dass diese "Geschwindigkeitsform" der Rekonstruktion bessere Ergebnisse als die ursprüngliche "Längenform" liefert. Wir zeigen numerische Beweise für unsere Behauptung, dass man zu extrem kurzen Laserpulsen gehen muss, um Orbitale mit beliebiger Symmetrie zu rekonstruieren. Diese Ergebnisse basieren auf der exakten Lösung der zeitabhängigen Schrödingergleichung für 2D-Modellsysteme. Wir zeigen ferner, dass für zylindersymmetrische Orbitale wie das N2-Orbital, welches in der oben zitierten Arbeit rekonstruiert wurde, das volle 3D-Orbital rekonstruiert werden kann, nicht nur seine 2D-Projektion.
Resumo:
The time dependent Dirac equation which describes a heavy ion-atom collision system is solved via a set of coupled channel equations with energy eigenvalues and matrix elements which are given by a selfconsistent field many electron calculation. After a brief discussion of the theoretical approximations and the connection of the many particle with the one particle interpretation we discuss first results for the systems F{^8+} - Ne and F{^6+} - Ne. The resulting P(b) curves for the creation of a Ne K-hole are in good agreement with the experimental results.
Resumo:
We present a new scheme to solve the time dependent Dirac-Fock-Slater equation (TDDFS) for heavy many electron ion-atom collision systems. Up to now time independent self consistent molecular orbitals have been used to expand the time dependent wavefunction and rather complicated potential coupling matrix elements have been neglected. Our idea is to minimize the potential coupling by using the time dependent electronic density to generate molecular basis functions. We present the first results for 16 MeV S{^16+} on Ar.
Resumo:
Relativistic density functional theory is widely applied in molecular calculations with heavy atoms, where relativistic and correlation effects are on the same footing. Variational stability of the Dirac Hamiltonian is a very important field of research from the beginning of relativistic molecular calculations on, among efforts for accuracy, efficiency, and density functional formulation, etc. Approximations of one- or two-component methods and searching for suitable basis sets are two major means for good projection power against the negative continuum. The minimax two-component spinor linear combination of atomic orbitals (LCAO) is applied in the present work for both light and super-heavy one-electron systems, providing good approximations in the whole energy spectrum, being close to the benchmark minimax finite element method (FEM) values and without spurious and contaminated states, in contrast to the presence of these artifacts in the traditional four-component spinor LCAO. The variational stability assures that minimax LCAO is bounded from below. New balanced basis sets, kinetic and potential defect balanced (TVDB), following the minimax idea, are applied with the Dirac Hamiltonian. Its performance in the same super-heavy one-electron quasi-molecules shows also very good projection capability against variational collapse, as the minimax LCAO is taken as the best projection to compare with. The TVDB method has twice as many basis coefficients as four-component spinor LCAO, which becomes now linear and overcomes the disadvantage of great time-consumption in the minimax method. The calculation with both the TVDB method and the traditional LCAO method for the dimers with elements in group 11 of the periodic table investigates their difference. New bigger basis sets are constructed than in previous research, achieving high accuracy within the functionals involved. Their difference in total energy is much smaller than the basis incompleteness error, showing that the traditional four-spinor LCAO keeps enough projection power from the numerical atomic orbitals and is suitable in research on relativistic quantum chemistry. In scattering investigations for the same comparison purpose, the failure of the traditional LCAO method of providing a stable spectrum with increasing size of basis sets is contrasted to the TVDB method, which contains no spurious states already without pre-orthogonalization of basis sets. Keeping the same conditions including the accuracy of matrix elements shows that the variational instability prevails over the linear dependence of the basis sets. The success of the TVDB method manifests its capability not only in relativistic quantum chemistry but also for scattering and under the influence of strong external electronic and magnetic fields. The good accuracy in total energy with large basis sets and the good projection property encourage wider research on different molecules, with better functionals, and on small effects.