7 resultados para Low cost process
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
Mikrooptische Filter sind heutzutage in vielen Bereichen in der Telekommunikation unersetzlich. Wichtige Einsatzgebiete sind aber auch spektroskopische Systeme in der Medizin-, Prozess- und Umwelttechnik. Diese Arbeit befasst sich mit der Technologieentwicklung und Herstellung von luftspaltbasierenden, vertikal auf einem Substrat angeordneten, oberflächenmikromechanisch hergestellten Fabry-Perot-Filtern. Es werden zwei verschiedene Filtervarianten, basierend auf zwei verschiedenen Materialsystemen, ausführlich untersucht. Zum einen handelt es sich dabei um die Weiterentwicklung von kontinuierlich mikromechanisch durchstimmbaren InP / Luftspaltfiltern; zum anderen werden neuartige, kostengünstige Siliziumnitrid / Luftspaltfilter wissenschaftlich behandelt. Der Inhalt der Arbeit ist so gegliedert, dass nach einer Einleitung mit Vergleichen zu Arbeiten und Ergebnissen anderer Forschergruppen weltweit, zunächst einige theoretische Grundlagen zur Berechnung der spektralen Reflektivität und Transmission von beliebigen optischen Schichtanordnungen aufgezeigt werden. Auß erdem wird ein kurzer theoretischer Ü berblick zu wichtigen Eigenschaften von Fabry-Perot-Filtern sowie der Möglichkeit einer mikromechanischen Durchstimmbarkeit gegeben. Daran anschließ end folgt ein Kapitel, welches sich den grundlegenden technologischen Aspekten der Herstellung von luftspaltbasierenden Filtern widmet. Es wird ein Zusammenhang zu wichtigen Referenzarbeiten hergestellt, auf denen diverse Weiterentwicklungen dieser Arbeit basieren. Die beiden folgenden Kapitel erläutern dann ausführlich das Design, die Herstellung und die Charakterisierung der beiden oben erwähnten Filtervarianten. Abgesehen von der vorangehenden Epitaxie von InP / GaInAs Schichten, ist die Herstellung der InP / Luftspaltfilter komplett im Institut durchgeführt worden. Die Herstellungsschritte sind ausführlich in der Arbeit erläutert, wobei ein Schwerpunktthema das trockenchemische Ä tzen von InP sowie GaInAs, welches als Opferschichtmaterial für die Herstellung der Luftspalte genutzt wurde, behandelt. Im Verlauf der wissenschaftlichen Arbeit konnten sehr wichtige technische Verbesserungen entwickelt und eingesetzt werden, welche zu einer effizienteren technologischen Herstellung der Filter führten und in der vorliegenden Niederschrift ausführlich dokumentiert sind. Die hergestellten, für einen Einsatz in der optischen Telekommunikation entworfenen, elektrostatisch aktuierbaren Filter sind aus zwei luftspaltbasierenden Braggspiegeln aufgebaut, welche wiederum jeweils 3 InP-Schichten von (je nach Design) 357nm bzw. 367nm Dicke aufweisen. Die Filter bestehen aus im definierten Abstand parallel übereinander angeordneten Membranen, die über Verbindungsbrücken unterschiedlicher Anzahl und Länge an Haltepfosten befestigt sind. Da die mit 357nm bzw. 367nm vergleichsweise sehr dünnen Schichten freitragende Konstrukte mit bis zu 140 nm Länge bilden, aber trotzdem Positionsgenauigkeiten im nm-Bereich einhalten müssen, handelt es sich hierbei um sehr anspruchsvolle mikromechanische Bauelemente. Um den Einfluss der zahlreichen geometrischen Strukturparameter studieren zu können, wurden verschiedene laterale Filterdesigns implementiert. Mit den realisierten Filter konnte ein enorm weiter spektraler Abstimmbereich erzielt werden. Je nach lateralem Design wurden internationale Bestwerte für durchstimmbare Fabry-Perot-Filter von mehr als 140nm erreicht. Die Abstimmung konnte dabei kontinuierlich mit einer angelegten Spannung von nur wenigen Volt durchgeführt werden. Im Vergleich zu früher berichteten Ergebnissen konnten damit sowohl die Wellenlängenabstimmung als auch die dafür benötigte Abstimmungsspannung signifikant verbessert werden. Durch den hohen Brechungsindexkontrast und die geringe Schichtdicke zeigen die Filter ein vorteilhaftes, extrem weites Stopband in der Größ enordnung um 550nm. Die gewählten, sehr kurzen Kavitätslängen ermöglichen einen freien Spektralbereich des Filters welcher ebenfalls in diesen Größ enordnungen liegt, so dass ein weiter spektraler Einsatzbereich ermöglicht wird. Während der Arbeit zeigte sich, dass Verspannungen in den freitragenden InPSchichten die Funktionsweise der mikrooptischen Filter stark beeinflussen bzw. behindern. Insbesondere eine Unterätzung der Haltepfosten und die daraus resultierende Verbiegung der Ecken an denen sich die Verbindungsbrücken befinden, führte zu enormen vertikalen Membranverschiebungen, welche die Filtereigenschaften verändern. Um optimale Ergebnisse zu erreichen, muss eine weitere Verbesserung der Epitaxie erfolgen. Jedoch konnten durch den zusätzlichen Einsatz einer speziellen Schutzmaske die Unterätzung der Haltepfosten und damit starke vertikale Verformungen reduziert werden. Die aus der Verspannung resultierenden Verformungen und die Reaktion einzelner freistehender InP Schichten auf eine angelegte Gleich- oder Wechselspannung wurde detailliert untersucht. Mittels Weisslichtinterferometrie wurden lateral identische Strukturen verglichen, die aus unterschiedlich dicken InP-Schichten (357nm bzw. 1065nm) bestehen. Einen weiteren Hauptteil der Arbeit stellen Siliziumnitrid / Luftspaltfilter dar, welche auf einem neuen, im Rahmen dieser Dissertation entwickelten, technologischen Ansatz basieren. Die Filter bestehen aus zwei Braggspiegeln, die jeweils aus fünf 590nm dicken, freistehenden Siliziumnitridschichten aufgebaut sind und einem Abstand von 390nm untereinander aufweisen. Die Filter wurden auf Glassubstraten hergestellt. Der Herstellungsprozess ist jedoch auch mit vielen anderen Materialien oder Prozessen kompatibel, so dass z.B. eine Integration mit anderen Bauelemente relativ leicht möglich ist. Die Prozesse dieser ebenfalls oberflächenmikromechanisch hergestellten Filter wurden konsequent auf niedrige Herstellungskosten optimiert. Als Opferschichtmaterial wurde hier amorph abgeschiedenes Silizium verwendet. Der Herstellungsprozess beinhaltet die Abscheidung verspannungsoptimierter Schichten (Silizium und Siliziumnitrid) mittels PECVD, die laterale Strukturierung per reaktiven Ionenätzen mit den Gasen SF6 / CHF3 / Ar sowie Fotolack als Maske, die nasschemische Unterätzung der Opferschichten mittels KOH und das Kritisch-Punkt-Trocken der Proben. Die Ergebnisse der optischen Charakterisierung der Filter zeigen eine hohe Ü bereinstimmung zwischen den experimentell ermittelten Daten und den korrespondierenden theoretischen Modellrechnungen. Weisslichtinterferometermessungen der freigeätzten Strukturen zeigen ebene Filterschichten und bestätigen die hohe vertikale Positioniergenauigkeit, die mit diesem technologischen Ansatz erreicht werden kann.
Resumo:
The ordered nano-structured surfaces, like self-assembled monolayers (SAMs) are of a great scientific interest, due to the low cost, simplicity, and versatility of this method. SAMs found numerous of applications in molecular electronics, biochemistry and optical devices. Phthalocyanine (Pc) complexes are of particular interest for the SAM preparation. These molecules exhibit fascinating physical properties and are chemically and thermally stable. Moreover their complex structure is advantageous for the fabrication of switchable surfaces. In this work the adsorption process of Pcs derivatives, namely, subphthalocyanines (SubPcB) and terbium (2TbPc) sandwich complexes on gold has been investigated. The influence of the molecular concentration, chain length of peripheral groups, and temperature on the film formation process has been examined using a number of techniques. The SAMs formation process has been followed in situ and in real time by means of second harmonic generation (SHG) and surface plasmon resonance (SPR) spectroscopy. To investigate the quality of the SAMs prepared at different temperatures atomic force microscopy (AFM) and X-Ray photoelectron spectroscopy (XPS)measurements were performed. Valuable information about SubPcB and 2TbPc adsorbtion process has been obtained in the frame of this work. The kinetic data, obtained with SHG and SPR, shows the best conformance with the first order Langmuir kinetic model. Comparing SHG and SPR results, it has been found, that the film formation occurs faster than the formation of chemical bonds. Such, the maximum amount of molecules on the surface is reached after 6 min for SubPcB and 30 min for 2TbPc. However, at this time the amount of formed chemicals bonds is only 10% and 40% for SubPcB and 2TbPc, respectively. The most intriguing result, among others, was obtained at T = 2 °C, where the formation of the less dense SAMs have been detected with SHG.However, analyzing XPS and AFM data, it has been revealed, that there is the same amount of molecules on the surface at both temperature T = 2 °C, and T = 21 °C, but the amount of formed chemicals bond is different. At T = 2 °C molecules form aggregates, therefore many of available anchor groups stay unattached.
Resumo:
High-speed semiconductor lasers are an integral part in the implemen- tation of high-bit-rate optical communications systems. They are com- pact, rugged, reliable, long-lived, and relatively inexpensive sources of coherent light. Due to the very low attenuation window that exists in the silica based optical fiber at 1.55 μm and the zero dispersion point at 1.3 μm, they have become the mainstay of optical fiber com- munication systems. For the fabrication of lasers with gratings such as, distributed bragg reflector or distributed feedback lasers, etching is the most critical step. Etching defines the lateral dimmensions of the structure which determines the performance of optoelectronic devices. In this thesis studies and experiments were carried out about the exist- ing etching processes for InP and a novel dry etching process was de- veloped. The newly developed process was based on Cl2/CH4/H2/Ar chemistry and resulted in very smooth surfaces and vertical side walls. With this process the grating definition was significantly improved as compared to other technological developments in the respective field. A surface defined grating definition approach is used in this thesis work which does not require any re-growth steps and makes the whole fabrication process simpler and cost effective. Moreover, this grating fabrication process is fully compatible with nano-imprint lithography and can be used for high throughput low-cost manufacturing. With usual etching techniques reported before it is not possible to etch very deep because of aspect ratio dependent etching phenomenon where with increasing etch depth the etch rate slows down resulting in non-vertical side walls and footing effects. Although with our de- veloped process quite vertical side walls were achieved but footing was still a problem. To overcome the challenges related to grating defini- tion and deep etching, a completely new three step gas chopping dry etching process was developed. This was the very first time that a time multiplexed etching process for an InP based material system was demonstrated. The developed gas chopping process showed extra ordinary results including high mask selectivity of 15, moderate etch- ing rate, very vertical side walls and a record high aspect ratio of 41. Both the developed etching processes are completely compatible with nano imprint lithography and can be used for low-cost high-throughput fabrication. A large number of broad area laser, ridge waveguide laser, distributed feedback laser, distributed bragg reflector laser and coupled cavity in- jection grating lasers were fabricated using the developed one step etch- ing process. Very extensive characterization was done to optimize all the important design and fabrication parameters. The devices devel- oped have shown excellent performance with a very high side mode suppression ratio of more than 52 dB, an output power of 17 mW per facet, high efficiency of 0.15 W/A, stable operation over temperature and injected currents and a threshold current as low as 30 mA for almost 1 mm long device. A record high modulation bandwidth of 15 GHz with electron-photon resonance and open eye diagrams for 10 Gbps data transmission were also shown.
Resumo:
Das Ziel der vorliegenden Arbeit war die Herstellung und Charakterisierung mikromechanisch durchstimmbarer, dielektrischer Fabry-Pérot-Filter im nahen Infrarot-Bereich bei einer Zentralwellenlänge von λc = 950 nm. Diese Bauelemente wurden auf Basis kostengünstiger Technologien realisiert, dank deren Entwicklung extreme Miniaturisierung und gleichzeitig hohe spektrale Anforderungen möglich sind. Der Vorteil solcher Filter liegt darin, dass sie direkt in einen Photodetektor integriert werden können und mit ganz wenigen Komponenten zu einem kompakten Spektrometermodul zusammengesetzt werden können. Die Baugröße ist nur durch die Größe des Photodetektors limitiert und die gesamte Intensität des einfallenden Lichts kann vorteilhaft auf eine einzelne Filtermembran des Fabry-Pérot-Filters fokussiert werden. Für den Filteraufbau werden zwei hochreflektierende, dielektrische DBR-Spiegel, ein organisches Opferschichtmaterial, welches zur Erzeugung einer Luftkavität im Filter dient, und zwei unterschiedliche Elektroden aus ITO und Aluminium verwendet. Die mikromechanische Auslenkung der freigelegten Filtermembran geschieht mittels elektrostatischer Aktuation, wobei auf diese Weise die Kavitätshöhe des Fabry-Pérot-Filters geändert wird und somit dieser im erforderlichen Spektralbereich optisch durchgestimmt wird. Das in dieser Arbeit gewählte Filterkonzept stellt eine Weiterentwicklung eines bereits bestehenden Filterkonzepts für den sichtbaren Spektralbereich dar. Zum Einen wurden in dieser Arbeit das vertikale und das laterale Design der Filterstrukturen geändert. Eine entscheidende Änderung lag im mikromechanisch beweglichen Teil des Fabry-Pérot-Filters. Dieser schließt den oberen DBR-Spiegel und ein aus dielektrischen Schichten und der oberen Aluminium-Elektrode bestehendes Membranhaltesystem ein, welches später durch Entfernung der Opferschicht freigelegt wird. Die Fläche des DBR-Spiegels wurde auf die Fläche der Filtermembran reduziert und auf dem Membranhaltesystem positioniert. Zum Anderen wurde im Rahmen dieser Arbeit der vertikale Schichtaufbau des Membranhaltesystems variiert und der Einfluss der gewählten Materialien auf die Krümmung der freistehenden Filterstrukturen, auf das Aktuationsverhalten und auf die spektralen Eigenschaften des gesamten Filters untersucht. Der Einfluss der mechanischen Eigenschaften dieser Materialien spielt nämlich eine bedeutende Rolle bei der Erhaltung der erforderlichen optischen Eigenschaften des gesamten Filters. Bevor Fabry-Pérot-Filter ausgeführt wurden, wurde die mechanische Spannung in den einzelnen Materialien des Membranhaltesystems bestimmt. Für die Messung wurde Substratkrümmungsmethode angewendet. Es wurde gezeigt, dass die Plasmaanregungsfrequenzen der plasmaunterstützten chemischen Gasphasenabscheidung bei einer Prozesstemperatur von 120 °C die mechanische Spannung von Si3N4 enorm beeinflussen. Diese Ergebnisse wurden im Membranhaltesystem umgesetzt, wobei verschiedene Filter mit unterschiedlichen mechanischen Eigenschaften des Membranhaltesystems gezeigt wurden. Darüber hinaus wurden optische Eigenschaften der Filter unter dem Einfluss des lateralen Designs der Filterstrukturen untersucht. Bei den realisierten Filtern wurden ein optischer Durchstimmbereich von ca. 70 nm und eine spektrale Auflösung von 5 nm erreicht. Die erreichte Intensität der Transmissionslinie liegt bei 45-60%. Diese Parameter haben für den späteren spektroskopischen Einsatz der realisierten Fabry-Pérot-Filter eine hohe Bedeutung. Die Anwendung soll erstmalig in einem „Proof of Concept“ stattfinden, wobei damit die Oberflächentemperatur eines GaAs-Wafers über die Messung der spektralen Lage seiner Bandlücke bestimmt werden kann.
Resumo:
In dieser Arbeit werden optische Filterarrays für hochqualitative spektroskopische Anwendungen im sichtbaren (VIS) Wellenlängenbereich untersucht. Die optischen Filter, bestehend aus Fabry-Pérot (FP)-Filtern für hochauflösende miniaturisierte optische Nanospektrometer, basieren auf zwei hochreflektierenden dielektrischen Spiegeln und einer zwischenliegenden Resonanzkavität aus Polymer. Jeder Filter erlaubt einem schmalbandigem spektralen Band (in dieser Arbeit Filterlinie genannt) ,abhängig von der Höhe der Resonanzkavität, zu passieren. Die Effizienz eines solchen optischen Filters hängt von der präzisen Herstellung der hochselektiven multispektralen Filterfelder von FP-Filtern mittels kostengünstigen und hochdurchsatz Methoden ab. Die Herstellung der multiplen Spektralfilter über den gesamten sichtbaren Bereich wird durch einen einzelnen Prägeschritt durch die 3D Nanoimprint-Technologie mit sehr hoher vertikaler Auflösung auf einem Substrat erreicht. Der Schlüssel für diese Prozessintegration ist die Herstellung von 3D Nanoimprint-Stempeln mit den gewünschten Feldern von Filterkavitäten. Die spektrale Sensitivität von diesen effizienten optischen Filtern hängt von der Genauigkeit der vertikalen variierenden Kavitäten ab, die durch eine großflächige ‚weiche„ Nanoimprint-Technologie, UV oberflächenkonforme Imprint Lithographie (UV-SCIL), ab. Die Hauptprobleme von UV-basierten SCIL-Prozessen, wie eine nichtuniforme Restschichtdicke und Schrumpfung des Polymers ergeben Grenzen in der potenziellen Anwendung dieser Technologie. Es ist sehr wichtig, dass die Restschichtdicke gering und uniform ist, damit die kritischen Dimensionen des funktionellen 3D Musters während des Plasmaätzens zur Entfernung der Restschichtdicke kontrolliert werden kann. Im Fall des Nanospektrometers variieren die Kavitäten zwischen den benachbarten FP-Filtern vertikal sodass sich das Volumen von jedem einzelnen Filter verändert , was zu einer Höhenänderung der Restschichtdicke unter jedem Filter führt. Das volumetrische Schrumpfen, das durch den Polymerisationsprozess hervorgerufen wird, beeinträchtigt die Größe und Dimension der gestempelten Polymerkavitäten. Das Verhalten des großflächigen UV-SCIL Prozesses wird durch die Verwendung von einem Design mit ausgeglichenen Volumen verbessert und die Prozessbedingungen werden optimiert. Das Stempeldesign mit ausgeglichen Volumen verteilt 64 vertikal variierenden Filterkavitäten in Einheiten von 4 Kavitäten, die ein gemeinsames Durchschnittsvolumen haben. Durch die Benutzung der ausgeglichenen Volumen werden einheitliche Restschichtdicken (110 nm) über alle Filterhöhen erhalten. Die quantitative Analyse der Polymerschrumpfung wird in iii lateraler und vertikaler Richtung der FP-Filter untersucht. Das Schrumpfen in vertikaler Richtung hat den größten Einfluss auf die spektrale Antwort der Filter und wird durch die Änderung der Belichtungszeit von 12% auf 4% reduziert. FP Filter die mittels des Volumengemittelten Stempels und des optimierten Imprintprozesses hergestellt wurden, zeigen eine hohe Qualität der spektralen Antwort mit linearer Abhängigkeit zwischen den Kavitätshöhen und der spektralen Position der zugehörigen Filterlinien.
Resumo:
Im Rahmen dieser Arbeit wird die Herstellung von miniaturisierten NIR-Spektrometern auf Basis von Fabry-Pérot (FP) Filter Arrays behandelt. Bisher ist die kostengünstige Strukturierung von homogenen und vertikal erweiterten Kavitäten für NIR FP-Filter mittels Nanoimprint Technologie noch nicht verfügbar, weil die Qualität der Schichten des Prägematerials unzureichend ist und die geringe Mobilität der Prägematerialien nicht ausreicht, um die vertikal erweiterten Kavitäten zu füllen. Diese Arbeit konzentriert sich auf die Reduzierung des technischen Aufwands zur Herstellung von homogenen und vertikal erweiterten Kavitäten. Zur Strukturierung der Kavitäten wird ein großflächiger substratkonformer UV-Nanoimprint Prozess (SCIL - Substrate Conformal Imprint Lithoghaphy) verwendet, der auf einem Hybridstempel basiert und Vorteile von harten und weichen Stempeln vereint. Um die genannten Limitierungen zu beseitigen, werden alternative Designs der Kavitäten untersucht und ein neues Prägematerial eingesetzt. Drei Designlösungen zur Herstellung von homogenen und erweiterten Kavitäten werden untersucht und verglichen: (i) Das Aufbringen des Prägematerials mittel mehrfacher Rotationsbeschichtung, um eine höhere Schichtdicke des Prägematerials vor dem Prägeprozess zu erzeugen, (ii) die Verwendung einer hybriden Kavität bestehend aus einer strukturierten Schicht des Prägematerials eingebettet zwischen zwei Siliziumoxidschichten, um die Schichtdicke der organischen Kavität zu erweitern und (iii) die Optimierung des Prägeprozesses durch Verwendung eines neuen Prägematerials. Die mit diesen drei Ansätzen hergestellten FP-Filter Arrays zeigen, hohe Transmissionen (beste Transmission > 90%) und kleine Linienbreiten (Halbwertsbreiten <5 nm).