3 resultados para Loss N-NH3
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Agricultural systems with conventional tillage and intensive use of agrochemicals, especially those on high slopes and with shallow soils, have the potential to release pollutants. This study aimed at evaluating the soil, water and nutrient lost via agricultural runoff in large plots (small catchments) under conventional and organic farming of vegetables as well as under forest (control) system in a Cambisol in the Campestre catchment. Samples of runoff were collected biweekly for one year through a Coshocton wheel. The soil and water losses from the conventional farming were 218 and 6 times higher, respectively, than forest. Under organic farming the soil and water losses were 12 and 4 times higher, respectively, than forest. However the soil losses (0.5 to 114 kg ha^(−1) year^(−1)) are considered low in agronomy but environmentally represent a potential source of surface water contamination by runoff associated pollutants. The concentrations and losses of all forms of phosphorus (P) were higher in the conventional system (9.5, 0.9 and 0.3 mg L^(−1) of total P for conventional, organic and forest systems, respectively), while the organic system had the highest concentrations and losses of soluble nitrogen (4.7, 38.6 and 0.4 mg L^(−1) of NO_3-N, respectively). The percentage of bioavailable P was proportionally higher in the organic system (91% of total P lost was as bioavailable P), indicating greater potential for pollution in the short term.
Resumo:
Previous work in yeast has suggested that modification of tRNAs, in particular uridine bases in the anticodon wobble position (U34), is linked to TOR (target of rapamycin) signaling. Hence, U34 modification mutants were found to be hypersensitive to TOR inhibition by rapamycin. To study whether this involves inappropriate TOR signaling, we examined interaction between mutations in TOR pathway genes (tip41Δ, sap190Δ, ppm1Δ, rrd1Δ) and U34 modification defects (elp3Δ, kti12Δ, urm1Δ, ncs2Δ) and found the rapamycin hypersensitivity in the latter is epistatic to drug resistance of the former. Epistasis, however, is abolished in tandem with a gln3Δ deletion, which inactivates transcription factor Gln3 required for TOR-sensitive activation of NCR (nitrogen catabolite repression) genes. In line with nuclear import of Gln3 being under control of TOR and dephosphorylation by the Sit4 phosphatase, we identify novel TOR-sensitive sit4 mutations that confer rapamycin resistance and importantly, mislocalise Gln3 when TOR is inhibited. This is similar to gln3Δ cells, which abolish the rapamycin hypersensitivity of U34 modification mutants, and suggests TOR deregulation due to tRNA undermodification operates through Gln3. In line with this, loss of U34 modifications (elp3Δ, urm1Δ) enhances nuclear import of and NCR gene activation (MEP2, GAP1) by Gln3 when TOR activity is low. Strikingly, this stimulatory effect onto Gln3 is suppressed by overexpression of tRNAs that usually carry the U34 modifications. Collectively, our data suggest that proper TOR signaling requires intact tRNA modifications and that loss of U34 modifications impinges on the TORsensitive NCR branch via Gln3 misregulation.
Resumo:
In eukaryotes, wobble uridines in the anticodons of tRNALysUUU, tRNAGluUUC and tRNAGlnUUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined loss of tRNA anticodon modifications (mcm5U and s2U) without a lethal effect. However, an elp3 disruption strain displays synthetic sick interaction and synergistic temperature sensitivity when combined with either uba4 or urm1 mutations, suggesting major translational defects in the absence of mcm5s2U modifications. Consistent with this notion, we find cellular protein levels drastically decreased in an elp3uba4 double mutant and show that this effect as well as growth phenotypes can be partially rescued by excess of tRNALysUUU. These results may indicate a global translational or protein homeostasis defect in cells simultaneously lacking mcm5 and s2 wobble uridine modification that could account for growth impairment and mainly originates from tRNALysUUU hypomodification and malfunction.