3 resultados para Load bearing LSF walls

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ein großer Teil der Schäden wie auch der Verluste an Gesundheit und Leben im Erdbebenfall hat mit dem frühzeitigen Versagen von Mauerwerksbauten zu tun. Unbewehrtes Mauerwerk, wie es in vielen Ländern üblich ist, weist naturgemäß einen begrenzten Erdbebenwiderstand auf, da Zugspannungen und Zugkräfte nicht wie bei Stahlbeton- oder Stahlbauten aufgenommen werden können. Aus diesem Grund wurde bereits mit verschiedenen Methoden versucht, die Tragfähigkeit von Mauerwerk im Erdbebenfall zu verbessern. Modernes Mauerwerk kann auch als bewehrtes oder eingefasstes Mauerwerk hergestellt werden. Bei bewehrtem Mauerwerk kann durch die Bewehrung der Widerstand bei Beanspruchung als Scheibe wie als Platte verbessert werden, während durch Einfassung mit Stahlbetonelementen in erster Linie die Scheibentragfähigkeit sowie die Verbindung zu angrenzenden Bauteilen verbessert wird. Eine andere interessante Möglichkeit ist das Aufbringen textiler Mauerwerksverstärkungen oder von hochfesten Lamellen. In dieser Arbeit wird ein ganz anderer Weg beschritten, indem weiche Fugen Spannungsspitzen reduzieren sowie eine höhere Verformbarkeit gewährleiten. Dies ist im Erdbebenfall sehr hilfreich, da die Widerstandfähigkeit eines Bauwerks oder Bauteils letztlich von der Energieaufnahmefähigkeit, also dem Produkt aus Tragfähigkeit und Verformbarkeit bestimmt wird. Wenn also gleichzeitig durch die weichen Fugen keine Schwächung oder sogar eine Tragfähigkeitserhöhung stattfindet, kann der Erdbebenwiderstand gesteigert werden. Im Kern der Dissertation steht die Entwicklung der Baukonstruktion einer Mauerwerkstruktur mit einer neuartigen Ausbildung der Mauerwerksfugen, nämlich Elastomerlager und Epoxydharzkleber anstatt üblichem Dünnbettmörtel. Das Elastomerlager wird zwischen die Steinschichten einer Mauerwerkswand eingefügt und damit verklebt. Die Auswirkung dieses Ansatzes auf das Verhalten der Mauerwerkstruktur wird unter dynamischer und quasi-statischer Last numerisch und experimentell untersucht und dargestellt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrahochfester Beton besitzt aufgrund seiner Zusammensetzung eine sehr hohe Druckfestigkeit von 150 bis über 200 N/mm² und eine außergewöhnlich hohe Dichtigkeit. Damit werden Anwendungen in stark belasteten Bereichen und mit hohen Anforderungen an die Dauerhaftigkeit des Materials ermöglicht. Gleichzeitig zeigt ultrahochfester Beton bei Erreichen seiner Festigkeit ein sehr sprödes Verhalten. Zur Verhinderung eines explosionsartigen Versagens werden einer UHPC-Mischung Fasern zugegeben oder wird eine Umschnürung mit Stahlrohren ausgebildet. Die Zugabe von Fasern zur Betonmatrix beeinflusst neben der Verformungsfähigkeit auch die Tragfähigkeit des UHPC. Das Versagen der Fasern ist abhängig von Fasergeometrie, Fasergehalt, Verbundverhalten sowie Zugfestigkeit der Faser und gekennzeichnet durch Faserauszug oder Faserreißen. Zur Sicherstellung der Tragfähigkeit kann daher auf konventionelle Bewehrung außer bei sehr dünnen Bauteilen nicht verzichtet werden. Im Rahmen des Schwerpunktprogramms SPP 1182 der Deutschen Forschungsgemeinschaft (DFG) wurden in dem dieser Arbeit zugrunde liegenden Forschungsprojekt die Fragen nach der Beschreibung des Querkrafttragverhaltens von UHPC-Bauteilen mit kombinierter Querkraftbewehrung und der Übertragbarkeit bestehender Querkraftmodelle auf UHPC untersucht. Neben einer umfassenden Darstellung vorhandener Querkraftmodelle für Stahlbetonbauteile ohne Querkraftbewehrung und mit verschiedenen Querkraftbewehrungsarten bilden experimentelle Untersuchungen zum Querkrafttragverhalten an UHPC-Balken mit verschiedener Querkraftbewehrung den Ausgangspunkt der vorliegenden Arbeit. Die experimentellen Untersuchungen beinhalteten zehn Querkraftversuche an UHPC-Balken. Diese Balken waren in Abmessungen und Biegezugbewehrung identisch. Sie unterschieden sich nur in der Art der Querkraftbewehrung. Die Querkraftbewehrungsarten umfassten eine Querkraftbewehrung aus Stahlfasern oder Vertikalstäben, eine kombinierte Querkraftbewehrung aus Stahlfasern und Vertikalstäben und einen Balken ohne Querkraftbewehrung. Obwohl für die in diesem Projekt untersuchten Balken Fasergehalte gewählt wurden, die zu einem entfestigenden Nachrissverhalten des Faserbetons führten, zeigten die Balkenversuche, dass die Zugabe von Stahlfasern die Querkrafttragfähigkeit steigerte. Durch die gewählte Querkraftbewehrungskonfiguration bei ansonsten identischen Balken konnte außerdem eine quantitative Abschätzung der einzelnen Traganteile aus den Versuchen abgeleitet werden. Der profilierte Querschnitt ließ einen großen Einfluss auf das Querkrafttragverhalten im Nachbruchbereich erkennen. Ein relativ stabiles Lastniveau nach Erreichen der Höchstlast konnte einer Vierendeelwirkung zugeordnet werden. Auf Basis dieser Versuchsergebnisse und analytischer Überlegungen zu vorhandenen Querkraftmodellen wurde ein additiver Modellansatz zur Beschreibung des Querkrafttragverhaltens von UHPCBalken mit einer kombinierten Querkraftbewehrung aus Stahlfasern und Vertikalstäben formuliert. Für die Formulierung der Traganteile des Betonquerschnitts und der konventionellen Querkraftbewehrung wurden bekannte Ansätze verwendet. Für die Ermittlung des Fasertraganteils wurde die Faserwirksamkeit zugrunde gelegt. Das Lastniveau im Nachbruchbereich aus Viendeelwirkung ergibt sich aus geometrischen Überlegungen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eurocode 8 representing a new generation of structural design codes in Europe defines ‎requirements for the design of buildings against earthquake action. In Central and ‎Western Europe, the newly defined earthquake zones and corresponding design ground ‎acceleration values, will lead in many cases to earthquake actions which are remarkably ‎higher than those defined so far by the design codes used until now in Central Europe. ‎ In many cases, the weak points of masonry structures during an earthquake are the corner ‎regions of the walls. Loading of masonry walls by earthquake action leads in most cases ‎to high shear forces. The corresponding bending moment in such a wall typically causes a ‎significant increase of the eccentricity of the normal force in the critical wall cross ‎section. This in turn leads ultimately to a reduction of the size of the compression zone in ‎unreinforced walls and a high concentration of normal stresses and shear stresses in the ‎corner regions. ‎ Corner-Gap-Elements, consisting of a bearing beam located underneath the wall and ‎made of a sufficiently strong material (such as reinforced concrete), reduce the effect of ‎the eccentricity of the normal force and thus restricts the pinching effect of the ‎compression zone. In fact, the deformation can be concentrated in the joint below the ‎bearing beam. According to the principles of the Capacity Design philosophy, the ‎masonry itself is protected from high stresses as a potential cause of brittle failure. ‎ Shaking table tests at the NTU Athens Earthquake Engineering Laboratory have proven ‎the effectiveness of the Corner-Gap-Element. The following presentation will cover the ‎evaluation of various experimental results as well as a numerical modeling of the ‎observed phenomena.‎