13 resultados para Link-mining

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is a study about knowledge interface that aims to analyse knowledge discontinuities, the dynamic and emergent characters of struggles and interactions within gender system and ethnicity differences. The cacao boom phenomenon in Central Sulawesi is the main context for a changing of social relations of production, especially when the mode of production has shifted or is still underway from subsistence to petty commodity production. This agrarian change is not only about a change of relationship and practice, but, as my previous research has shown, also about the shift of knowledge domination, because knowledge construes social practice in a dialectical process. Agroecological knowledge is accumulated through interaction, practice and experience. At the same time the knowledge gained from new practices and experiences changes mode of interaction, so such processes provide the arena where an interface of knowledge is manifested. In the process of agro-ecological knowledge interface, gender and ethnic group interactions materialise in the decision-making of production and resource allocation at the household and community level. At this point, power/knowledge is interplayed to gain authority in decision-making. When authority dominates, power encounters resistance, whereas the dominant power and its resistance are aimed to ensure socio-economic security. Eventually, the process of struggle can be identified through the pattern of resource utilisation as a realisation of production decision-making. Such processes are varied from one community to another, and therefore, it shows uniqueness and commonalities, especially when it is placed in a context of shifting mode of production. The focus is placed on actors: men and women in their institutional and cultural setting, including the role of development agents. The inquiry is informed by 4 major questions: 1) How do women and men acquire, disseminate, and utilise their agro ecological knowledge, specifically in rice farming as a subsistence commodity, as well as in cacao farming as a petty commodity? How and why do such mechanisms construct different knowledge domains between two genders? How does the knowledge mechanism apply in different ethnics? What are the implications for gender and ethnicity based relation of production? ; 2) Using the concept of valued knowledge in a shifting mode of production context: is there any knowledge that dominates others? How does the process of domination occur and why? Is there any form of struggle, strategies, negotiation, and compromise over this domination? How do these processes take place at a household as well as community level? How does it relate to production decision-making? ; 3) Putting the previous questions in two communities with a different point of arrival on a path of agricultural commercialisation, how do the processes of struggle vary? What are the bases of the commonalities and peculiarities in both communities?; 4) How the decisions of production affect rice field - cacao plantation - forest utilisation in the two villages? How does that triangle of resource use reflect the constellation of local knowledge in those two communities? What is the implication of this knowledge constellation for the cacao-rice-forest agroecosystem in the forest margin area? Employing a qualitative approach as the main method of inquiry, indepth and dialogic interviews, participant observer role, and document review are used to gather information. A small survey and children’s writing competition are supplementary to this data collection method. The later two methods are aimed to give wider information on household decision making and perception toward the forest. It was found that local knowledge, particularly knowledge pertaining to rice-forest-cacao agroecology is divided according to gender and ethnicity. This constellation places a process of decision-making as ‘the arena of interface’ between feminine and masculine knowledge, as well as between dominant and less dominant ethnic groups. Transition from subsistence to a commercial mode of production is a context that frames a process where knowledge about cacao commodity is valued higher than rice. Market mechanism, as an external power, defines valued knowledge. Valued knowledge defines the dominant knowledge holder, and decision. Therefore, cacao cultivation becomes a dominant practice. Its existence sacrifices the presence of rice field and the forest. Knowledge about rice production and forest ecosystem exist, but is less valued. So it is unable to challenge the domination of cacao. Various forms of struggles - within gender an ethnicity context - to resist cacao domination are an expression of unequal knowledge possession. Knowledge inequality implies to unequal access to withdraw benefit from market valued crop. When unequal knowledge fails to construct a negotiated field or struggles fail to reveal ‘marginal’ decision, e.g. intensification instead of cacao expansion to the forest, interface only produces divergence. Gender and ethnicity divided knowledge is unabridged, since negotiation is unable to produce new knowledge that accommodates both interests. Rice is loaded by ecological interest to conserve the forest, while cacao is driven by economic interest to increase welfare status. The implication of this unmediated dominant knowledge of cacao production is the construction of access; access to the forest, mainly to withdraw its economic benefit by eliminating its ecological benefit. Then, access to cacao as the social relationship of production to acquire cacao knowledge; lastly, access to defend sustainable benefit from cacao by expansion. ‘Socio-economic Security’ is defined by Access. The convergence of rice and cacao knowledge, however, should be made possible across gender and ethnicity, not only for the sake of forest conservation as the insurance of ecological security, but also for community’s socio-economic security. The convergence might be found in a range of alternative ways to conduct cacao sustainable production, from agroforestry system to intensification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the relevance and the usefulness of extracted association rules is of primary importance because, in the majority of cases, real-life databases lead to several thousands association rules with high confidence and among which are many redundancies. Using the closure of the Galois connection, we define two new bases for association rules which union is a generating set for all valid association rules with support and confidence. These bases are characterized using frequent closed itemsets and their generators; they consist of the non-redundant exact and approximate association rules having minimal antecedents and maximal consequences, i.e. the most relevant association rules. Algorithms for extracting these bases are presented and results of experiments carried out on real-life databases show that the proposed bases are useful, and that their generation is not time consuming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. The idea is to improve, on the one hand, the results of Web Mining by exploiting the new semantic structures in the Web; and to make use of Web Mining, on overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: Growing numbers of researchers work on improving the results of Web Mining by exploiting semantic structures in the Web, and they use Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The second aim of this paper is to use these concepts to circumscribe what Web space is, what it represents and how it can be represented and analyzed. This is used to sketch the role that Semantic Web Mining and the software agents and human agents involved in it can play in the evolution of Web space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. These systems provide currently relatively few structure. We discuss in this paper, how association rule mining can be adopted to analyze and structure folksonomies, and how the results can be used for ontology learning and supporting emergent semantics. We demonstrate our approach on a large scale dataset stemming from an online system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: an increasing number of researchers is working on improving the results of Web Mining by exploiting semantic structures in the Web, and they make use of Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The Semantic Web is the second-generation WWW, enriched by machine-processable information which supports the user in his tasks. Given the enormous size even of today’s Web, it is impossible to manually enrich all of these resources. Therefore, automated schemes for learning the relevant information are increasingly being used. Web Mining aims at discovering insights about the meaning of Web resources and their usage. Given the primarily syntactical nature of the data being mined, the discovery of meaning is impossible based on these data only. Therefore, formalizations of the semantics of Web sites and navigation behavior are becoming more and more common. Furthermore, mining the Semantic Web itself is another upcoming application. We argue that the two areas Web Mining and Semantic Web need each other to fulfill their goals, but that the full potential of this convergence is not yet realized. This paper gives an overview of where the two areas meet today, and sketches ways of how a closer integration could be profitable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Association rules are a popular knowledge discovery technique for warehouse basket analysis. They indicate which items of the warehouse are frequently bought together. The problem of association rule mining has first been stated in 1993. Five years later, several research groups discovered that this problem has a strong connection to Formal Concept Analysis (FCA). In this survey, we will first introduce some basic ideas of this connection along a specific algorithm, TITANIC, and show how FCA helps in reducing the number of resulting rules without loss of information, before giving a general overview over the history and state of the art of applying FCA for association rule mining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.