4 resultados para Ligand-based methodologies
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Sweden’s recent report on Urban Sustainable Development calls out a missing link between the urban design process and citizens. This paper investigates if engaging citizens as design agents by providing a platform for alternate participation can bridge this gap, through the transfer of spatial agency and new modes of critical cartography. To assess whether this is the case, the approaches are applied to Stockholm’s urban agriculture movement in a staged intervention. The aim of the intervention was to engage citizens in locating existing and potential places for growing food and in gathering information from these sites to inform design in urban agriculture. The design-based methodologies incorporated digital and bodily interfaces for this cartography to take place. The Urban CoMapper, a smartphone digital app, captured real-time perspectives through crowd-sourced mapping. In the bodily cartography, participant’s used their bodies to trace the site and reveal their sensorial perceptions. The data gathered from these approaches gave way to a mode of artistic research for exploring urban agriculture, along with inviting artists to be engaged in the dialogues. In sum, results showed that a combination of digital and bodily approaches was necessary for a critical cartography if we want to engage citizens holistically into the urban design process as spatial agents informing urban policy. Such methodologies formed a reflective interrogation and encouraged a new intimacy with nature, in this instance, one that can transform our urban conduct by questioning our eating habits: where we get our food from and how we eat it seasonally.
Resumo:
The principal objective of this paper is to develop a methodology for the formulation of a master plan for renewable energy based electricity generation in The Gambia, Africa. Such a master plan aims to develop and promote renewable sources of energy as an alternative to conventional forms of energy for generating electricity in the country. A tailor-made methodology for the preparation of a 20-year renewable energy master plan focussed on electricity generation is proposed in order to be followed and verified throughout the present dissertation, as it is applied for The Gambia. The main input data for the proposed master plan are (i) energy demand analysis and forecast over 20 years and (ii) resource assessment for different renewable energy alternatives including their related power supply options. The energy demand forecast is based on a mix between Top-Down and Bottom-Up methodologies. The results are important data for future requirements of (primary) energy sources. The electricity forecast is separated in projections at sent-out level and at end-user level. On the supply side, Solar, Wind and Biomass, as sources of energy, are investigated in terms of technical potential and economic benefits for The Gambia. Other criteria i.e. environmental and social are not considered in the evaluation. Diverse supply options are proposed and technically designed based on the assessed renewable energy potential. This process includes the evaluation of the different available conversion technologies and finalizes with the dimensioning of power supply solutions, taking into consideration technologies which are applicable and appropriate under the special conditions of The Gambia. The balance of these two input data (demand and supply) gives a quantitative indication of the substitution potential of renewable energy generation alternatives in primarily fossil-fuel-based electricity generation systems, as well as fuel savings due to the deployment of renewable resources. Afterwards, the identified renewable energy supply options are ranked according to the outcomes of an economic analysis. Based on this ranking, and other considerations, a 20-year investment plan, broken down into five-year investment periods, is prepared and consists of individual renewable energy projects for electricity generation. These projects included basically on-grid renewable energy applications. Finally, a priority project from the master plan portfolio is selected for further deeper analysis. Since solar PV is the most relevant proposed technology, a PV power plant integrated to the fossil-fuel powered main electrical system in The Gambia is considered as priority project. This project is analysed by economic competitiveness under the current conditions in addition to sensitivity analysis with regard to oil and new-technology market conditions in the future.
Resumo:
English: The present thesis describes the synthesis of 1,1’-ferrocendiyl-based pyridylphosphine ligands, the exploration of their fundamental coordination chemistry and preliminary experiments with selected complexes aimed at potential applications. One main aspect is the synthesis of the bidentate ferrocene-based pyridylphosphine ligands 1-(Pyrid-2-yl)-1’-diphenylphosphinoferrocene, 1-(Pyrid-3-yl)-1’-diphenylphosphinoferrocene and 1-[(Pyrid-2-yl)methyl]-1’-diphenylphosphinoferrocene. A specific feature of these ligands is the ball-bearing like flexibility of the ferrocenebased backbone. An additional flexibility element is the rotation around the C–C single bonds. Consequently, the donor atoms can realise a wide range of positions with respect to each other and are therefore able to adapt to the coordination requirements of different metal centres. The flexibility of the ligand also plays a role in another key aspect of this work, which concerns the coordination mode, i. e. bridging vs. chelating. In addition to the flexibility, also the position of the donor atoms to each other is important. This is largely affected by the position of the pyridyl nitrogen (pyrid-2-yl vs. pyrid-3-yl) and the methylen group in 1-[(Pyrid-2-yl)methyl]-1’-diphenylphosphinoferrocene. Another interesting point is the combination of a soft phosphorus donor atom with a harder nitrogen donor atom, according to the HSAB principle. This combination generates a unique binding profile, since the pi-acceptor character of the P site is able to stabilise a metal centre in a low oxidation state, while the nitrogen sigma-donor ability can make the metal more susceptible to oxidative addition reactions. A P,N-donor combination can afford hemilabile binding profiles, which would be ideal for catalysis. Beyond 1,2-substituted ferrocene derivatives, which are quite successful in catalytic applications, 1,1’-derivatives are rather underrepresented. While a low-yield synthetic pathway to 1-(Pyrid-2-yl)-1’-diphenylphosphinoferrocene was already described in the literature [I. R. Butler, Organometallics 1992, 11, 74.], it was possible to find a new, improved and simplified synthetic pathway. Both other ligands were unknown prior to this work. Satisfactory results in the synthesis of 1-(Pyrid-3-yl)-1’-diphenylphosphinoferrocene could be achieved by working in analogy to the new synthetic procedure for 1-(Pyrid-2-yl)-1’-diphenylphosphinoferrocene. The synthesis of 1-[(Pyrid-2-yl)methyl]-1’-diphenylphosphinoferrocene has been handled by the group of Prof. Petr Stepnicka from Charles University, Prague, Czech Republic. The synthesis of tridentate ligands with an analogous heterodentate arrangement, was investigated briefly as a sideline of this study. The major part of this thesis deals with the fundamental coordination chemistry towards transition metals of the groups 10, 11 and 12. Due to the well-established catalytic properties of analogous palladium complexes, the coordination chemistry towards palladium (group 10) is of particular interest. The metals zinc and cadmium (group 12) are also of substantial importance because they are redox-inert in their divalent state. This is relevant in view of electrochemical investigations concerning the utilisation of the ligands as molecular redox sensors. Also mercury and the monovalent metals silver and gold (group 11) are included because of their rich coordination chemistry. It is essential to answer questions concerning aspects of the ligands’ coordination mode bearing in mind the HSAB principle.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.