3 resultados para Legalization of regulation
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In China, the history of the establishment of the private housing market is pretty short. Actually in less then two decades, the market has grown from almost the scratch to playing an important role in the economy. A great achievement! But many problems also exist. They need to be properly addressed and solved. Price problem---simply put, housing price is too high--- is one of them, and this paper is focused on it. Three basic questions are posed, i.e. (1) how to judge the housing affordability? (2) why the housing price is so high? (3) how to solve the housing price problem. The paper pays particular attention to answering the second question. Except the numerous news reports and surveys show that most of the ordinary city dwellers complained about the high housing price, the mathematical means, the four ratios, are applied to judge the housing affordability in Shanghai and Shenzhen. The results are very clear that the price problem is severe. So why? Something is wrong with the price mechanism. This research shows that mainly these five factors contribute to the price problem: the housing reform, the housing development model, the unbalanced housing market, the housing project financing and the poor governmental management. Finally the paper puts forward five suggestions to solve the housing price problem in first-hand private Chinese housing market. They include: the establishment of real estate information system, the creation of specific price management department, the government price regulation, the property tax and the legalization of "cushion money".
Resumo:
In the course of the ‘Livestock Revolution’, extension and intensification of, among others, ruminant livestock production systems are current phenomena, with all their positive and negative side effects. Manure, one of the inevitable secondary products of livestock rearing, is a valuable source of plant nutrients and its skillful recycling to the soil-plant interface is essential for soil fertility, nutrient - and especially phosphorus - uses efficiency and the preservation or re-establishment of environmentally sustainable farming systems, for which organic farming systems are exemplarily. Against this background, the PhD research project presented here, which was embedded in the DFG-funded Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture ’ investigated possibilities to manipulate the diets of water buffalo (Bubalus bubalis L.) so as to produce manure of desired quality for organic vegetable production, without affecting the productivity of the animals used. Consisting of two major parts, the first study (chapter 2) tested the effects of diets differing in their ratios of carbon (C) to nitrogen (N) and of structural to non-structural carbohydrates on the quality of buffalo manure under subtropical conditions in Sohar, Sultanate of Oman. To this end, two trials were conducted with twelve water buffalo heifers each, using a full Latin Square design. One control and four tests diets were examined during three subsequent 7 day experimental periods preceded each by 21 days adaptation. Diets consisted of varying proportions of Rhodes grass hay, soybean meal, wheat bran, maize, dates, and a commercial concentrate to achieve a (1) high C/N and high NDF (neutral detergent fibre)/SC (soluble carbohydrate) ratio (HH), (2) low C/N and low NDF/SC ratio (LL); (3) high C/N and low NDF/SC ratio (HL) and (4) low C/N and high NDF/SC (LH) ratio. Effects of these diets, which were offered at 1.45 times maintenance requirements of metabolizable energy, and of individual diet characteristics, respectively, on the amount and quality of faeces excreted were determined and statistically analysed. The faeces produced from diets HH and LL were further tested in a companion PhD study (Mr. K. Siegfried) concerning their nutrient release in field experiments with radish and cabbage. The second study (chapter 3) focused on the effects of the above-described experimental diets on the rate of passage of feed particles through the gastrointestinal tract of four randomly chosen animals per treatment. To this end, an oral pulse dose of 683 mg fibre particles per kg live weight marked with Ytterbium (Yb; 14.5 mg Yb g-1 organic matter) was dosed at the start of the 7 day experimental period which followed 21 days of adaptation. During the first two days a sample for Yb determination was kept from each faecal excretion, during days 3 – 7 faecal samples were kept from the first morning and the first evening defecation only. Particle passage was modelled using a one-compartment age-dependent Gamma-2 model. In both studies individual feed intake and faecal excretion were quantified throughout the experimental periods and representative samples of feeds and faeces were subjected to proximate analysis following standard protocols. In the first study the organic matter (OM) intake and excretion of LL and LH buffaloes were significantly lower than of HH and HL animals, respectively. Digestibility of N was highest in LH (88%) and lowest in HH (74%). While NDF digestibility was also highest in LH (85%) it was lowest in LL (78%). Faecal N concentration was positively correlated (P≤0.001) with N intake, and was significantly higher in faeces excreted by LL than by HH animals. Concentrations of fibre and starch in faecal OM were positively affected by the respective dietary concentrations, with NDF being highest in HH (77%) and lowest in LL (63%). The faecal C/N ratio was positively related (P≤0.001) to NDF intake; C/N ratios were 12 and 7 for HH and LL (P≤0.001), while values for HL and LH were 11.5 and 10.6 (P>0.05). The results from the second study showed that dietary N concentration was positively affecting faecal N concentration (P≤0.001), while there was a negative correlation with the faecal concentration of NDF (P≤0.05) and the faecal ratios of NDF/N and C/N (P≤0.001). Particle passage through the mixing compartment was lower (P≤0.05) for HL (0.033 h-1) than for LL (0.043 h-1) animals, while values of 0.034 h-1 and 0.038 h-1 were obtained for groups LH and HH. At 55.4 h, total tract mean retention time was significantly (P≤0.05) lower in group LL that in all other groups where these values varied between 71 h (HH) and 79 h (HL); this was probably due to the high dietary N concentration of diet LL which was negatively correlated with time of first marker appearance in faeces (r= 0.84, P≤0.001), while the dietary C concentration was negatively correlated with particle passage through the mixing compartment (r= 0.57, P≤0.05). The results suggest that manure quality of river buffalo heifers can be considerably influenced by diet composition. Despite the reportedly high fibre digestion capacity of buffalo, digestive processes did not suppress the expression of diet characteristics in the faeces. This is important when aiming at producing a specific manure quality for fertilization purposes in (organic) crop cultivation. Although there was a strong correlation between the ingestion and the faecal excretion of nitrogen, the correlation between diet and faecal C/N ratio was weak. To impact on manure mineralization, the dietary NDF and N concentrations seem to be the key control points, but modulating effects are achieved by the inclusion of starch into the diet. Within the boundaries defined by the animals’ metabolic and (re)productive requirements for energy and nutrients, diet formulation may thus take into account the abiotically and biotically determined manure turnover processes in the soil and the nutrient requirements of the crops to which the manure is applied, so as to increase nutrient use efficiency along the continuum of the feed, the animal, the soil and the crop in (organic) farming systems.
Resumo:
Das neuronale Adhäsionsmolekül L1 wird neben den Zellen des Nervensystems auf vielen humanen Tumoren exprimiert und ist dort mit einer schlechten Prognose für die betroffenen Patienten assoziiert. Zusätzlich zu seiner Funktion als Oberflächenmolekül kann L1 durch membranproximale Spaltung in eine lösliche Form überführt werden. In der vorliegenden Arbeit wurde der Einfluss von L1 auf die Motilität von Tumorzellen untersucht. Lösliches L1 aus Asziten führte zu einer Integrin-vermittelten Zellmigration auf EZM-Substraten. Derselbe Effekt wurde durch Überexpression von L1 in Tumorlinien beobachtet. Weiterhin führt die L1-Expression zu einer erhöhten Invasion, einem verstärkten Tumorwachstum in NOD/SCID Mäusen und zur konstitutiven Aktivierung der MAPK ERK1/2. Eine Mutation in der zytoplasmatischen Domäne von hL1 (Thr1247Ala/Ser1248Ala)(hL1mut) führte hingegen zu einer Blockade dieser Funktionen. Dies weist daraufhin, dass nicht nur lösliches L1, sondern auch die zytoplasmatische Domäne von L1 funktionell aktiv ist. Im zweiten Teil der Arbeit wurde der Mechanismus, der L1-vermittelten Signaltransduktion untersucht. Die zytoplasmatische Domäne von L1 gelangt nach sequenzieller Proteolyse durch ADAM und Presenilin-abhängiger γ-Sekretase Spaltung in den Zellkern. Diese Translokation im Zusammenspiel mit der Aktivierung der MAPK ERK1/2 durch L1-Expression führt zu einer L1-abhängigen Genregulation. Die zytoplasmatische Domäne von hL1mut konnte ebenfalls im Zellkern detektiert werden, vermittelte jedoch keine Genregulation und unterdrückte die ERK1/2 Phosphorylierung. Die L1-abhängige Induktion von ERK1/2-abhängigen Genen wie Cathepsin B, β3 Integrin und IER 3 war in Zellen der L1-Mutante unterdrückt. Die Expression des Retinsäure-bindenden Proteins CRABP-II, welches in hL1 Zellen supprimiert wird, wurde in der L1-Mutante nicht verändert. Weitere biochemische Untersuchungen zeigen, dass die zytoplasmatische Domäne von L1 Komplexe mit Transkriptionsfaktoren bilden kann, die an Promoterregionen binden können. Die dargestellten Ergebnisse belegen, dass L1-Expression in Tumoren an drei Funktionen beteiligt ist; (i) L1 erhöht Zellmotilität, (ii) fördert Tumorprogression durch Hochregulation von pro-invasiven und proliferationsfördernden Genen nach Translokation in den Nukleus und (iii) schützt die Zellen mittels Regulation pro- bzw. anti-apoptotischer Gene vor Apoptose. Die mutierte Phosphorylierungsstelle im L1-Molekül ist essentiell für diese Prozesse. Die Anwendung neuer Therapien für Patienten mit L1-positiven Karzinomen kann mit Hinblick auf die guten Erfolge der Antikörper-basierenden Therapie mit dem mAk L1-11A diskutiert werden.