1 resultado para Lagrangian
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (23)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (33)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (12)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- CaltechTHESIS (12)
- Cambridge University Engineering Department Publications Database (30)
- CentAUR: Central Archive University of Reading - UK (69)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (43)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (1)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (2)
- DigitalCommons - The University of Maine Research (1)
- Diposit Digital de la UB - Universidade de Barcelona (2)
- Duke University (6)
- Earth Simulator Research Results Repository (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (19)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (47)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (26)
- Publishing Network for Geoscientific & Environmental Data (268)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (18)
- Queensland University of Technology - ePrints Archive (29)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (187)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (13)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (11)
- University of Michigan (2)
- University of Southampton, United Kingdom (8)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (8)
Resumo:
The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles of the fluid. The method leads to a sequence of uniquely determined approximate solutions with a high degree of regularity containing a convergent subsequence with limit function v such that v is a weak solution of the Navier-Stokes equations.