2 resultados para Lagrange

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit den Fehlern, die bei der Berechnung von Tragstrukturen auftreten können, dem Diskretisierungs- und dem Modellfehler. Ein zentrales Werkzeug für die Betrachtung des lokalen Fehlers in einer FE-Berechnung sind die Greenschen Funktionen, die auch in anderen Bereichen der Statik, wie man zeigen kann, eine tragende Rolle spielen. Um den richtigen Einsatz der Greenschen Funktion mit der FE-Technik sicherzustellen, werden deren Eigenschaften und die konsistente Generierung aufgezeigt. Mit dem vorgestellten Verfahren, der Lagrange-Methode, wird es möglich auch für nichtlineare Probleme eine Greensche Funktion zu ermitteln. Eine logische Konsequenz aus diesen Betrachtungen ist die Verbesserung der Einflussfunktion durch Verwendung von Grundlösungen. Die Greensche Funktion wird dabei in die Grundlösung und einen regulären Anteil, welcher mittels FE-Technik bestimmt wird, aufgespalten. Mit dieser Methode, hier angewandt auf die Kirchhoff-Platte, erhält man deutlich genauere Ergebnisse als mit der FE-Methode bei einem vergleichbaren Rechenaufwand, wie die numerischen Untersuchungen zeigen. Die Lagrange-Methode bietet einen generellen Zugang zur zweiten Fehlerart, dem Modellfehler, und kann für lineare und nichtlineare Probleme angewandt werden. Auch hierbei übernimmt die Greensche Funktion wieder eine tragende Rolle, um die Auswirkungen von Parameteränderungen auf ausgewählte Zielgrößen betrachten zu können.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wir betrachten zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängi- gen Gebieten, wobei die Bewegung des Gebietsrandes bekannt ist. Die zeitliche Entwicklung des Gebietes wird durch die ALE-Formulierung behandelt, die die Nachteile der klassischen Euler- und Lagrange-Betrachtungsweisen behebt. Die Position des Randes und seine Geschwindigkeit werden dabei so in das Gebietsinnere fortgesetzt, dass starke Gitterdeformationen verhindert werden. Als Zeitdiskretisierungen höherer Ordnung werden stetige Galerkin-Petrov-Verfahren (cGP) und unstetige Galerkin-Verfahren (dG) auf Probleme in zeitabhängigen Gebieten angewendet. Weiterhin werden das C 1 -stetige Galerkin-Petrov-Verfahren und das C 0 -stetige Galerkin- Verfahren vorgestellt. Deren Lösungen lassen sich auch in zeitabhängigen Gebieten durch ein einfaches einheitliches Postprocessing aus der Lösung des cGP-Problems bzw. dG-Problems erhalten. Für Problemstellungen in festen Gebieten und mit zeitlich konstanten Konvektions- und Reaktionstermen werden Stabilitätsresultate sowie optimale Fehlerabschätzungen für die nachbereiteten Lösungen der cGP-Verfahren und der dG-Verfahren angegeben. Für zeitabhängige Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten präsentieren wir konservative und nicht-konservative Formulierungen, wobei eine besondere Aufmerksamkeit der Behandlung der Zeitableitung und der Gittergeschwindigkeit gilt. Stabilität und optimale Fehlerschätzungen für die in der Zeit semi-diskretisierten konservativen und nicht-konservativen Formulierungen werden vorgestellt. Abschließend wird das volldiskretisierte Problem betrachtet, wobei eine Finite-Elemente-Methode zur Ortsdiskretisierung der Konvektions-Diffusions-Reaktions-Gleichungen in zeitabhängigen Gebieten im ALE-Rahmen einbezogen wurde. Darüber hinaus wird eine lokale Projektionsstabilisierung (LPS) eingesetzt, um der Konvektionsdominanz Rechnung zu tragen. Weiterhin wird numerisch untersucht, wie sich die Approximation der Gebietsgeschwindigkeit auf die Genauigkeit der Zeitdiskretisierungsverfahren auswirkt.