4 resultados para LUMINESCENCE QUANTUM YIELD
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Das Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung von donor-funktionalisierten Spiro-Perylencarboximiden, welche für den Einsatz in optoelektronischen Bauelementen wie z.B. organischen Phototransistoren, Feldeffekttransistoren oder Solarzellen vorgesehen sind. Die donorfunktionalisierten Spiro-Perylencarboximide stellen kovalent gebundene Donor-Akzeptor-Verbindungen dar, die unter geeigneter Belichtung einen ladungsgetrennten Zustand bilden können. Die Verbindungen wurden aus unterschiedlichen Spiroamin- und Perylenanhydrid-Edukten synthetisiert, die im Baukastenprinzip zu den entsprechenden Zielverbindungen umgesetzt wurden. Mittels unterschiedlicher Charakterisierungsmethoden (z.B. DSC, TGA, CV, Absorptions- und Fluoreszenzmessungen) wurden die Eigenschaften der neuartigen Zielverbindungen untersucht. Im Rahmen der Arbeit wurden vier neue Spiroamin-Edukte erstmalig synthetisiert und charakterisiert. Sie wurden durch Reduktion aus den bisher noch nicht beschriebenen Nitroverbindungen bzw. mittels Pd-katalysierter Kreuzkupplung (Hartwig-Buchwald-Reaktion) aus einer halogenierten Spiroverbindung erhalten. Als Perylenanhydrid-Edukt wurde erstmals eine perfluorierte Perylenanhydrid-Imid-Verbindung hergestellt. Aus den Spiroamin- und Perylenanhydrid-Edukten wurden insgesamt neun neue, donorfunktionalisierte Spiro-Perylencarboximide synthetisiert. Zusätzlich wurden sechs neuartige Spiro-Perylencarboximide ohne Diphenylamin-Donor hergestellt, die als Vergleichsverbindungen dienten. Die donorfunktionalisierten Spiro-Perylencarboximide besitzen eine Absorption im UV- und sichtbaren Spektralbereich, wobei hohe Extinktionskoeffizienten erreicht werden. Die Verbindungen zeigen in verdünnter Lösung (sowohl in polaren als auch in unpolaren Lösungsmitteln) eine Fluoreszenzquantenausbeute unter 1 %, was auf einen effizienten Ladungstransfer zurückzuführen ist. Alle donorfunktionalisierten Spiro-Perylencarboximide zeigen in den CV-Messungen reversibles Verhalten. Mittels CV-Messungen und optischer Methode konnten die HOMO- und LUMO-Lagen der jeweiligen Molekülhälften berechnet und das Fluoreszenzverhalten der Verbindungen erklärt werden. Ebenso konnten die Auswirkungen von unterschiedlichen Substituenten auf die jeweiligen HOMO-/LUMO-Lagen näher untersucht werden. Die durchgeführten DSC- und TGA-Untersuchungen zeigen hohe morphologische und thermische Stabilität der Verbindungen, wobei Glasübergangstemperaturen > 211 °C, Schmelztemperaturen > 388 °C und Zersetzungstemperaturen > 453 °C gemessen wurden. Diese Werte sind höher als die bisher in der Literatur für ähnliche spiroverknüpfte Verbindungen berichteten. Als besonders interessant haben sich die unsymmetrischen donorfunktionalisierten Spiro-Perylencarboximide herausgestellt. Sie zeigen hohe Löslichkeit in gängigen Lösungsmitteln, sind bis zu einer Molmasse < 1227 g/mol aufdampfbar und bilden stabile, amorphe Schichten.
Resumo:
In der vorliegenden Arbeit wurden neue symmetrische Spiro-p-oligophenyle der allgemeinen Form Spiro-o-Φ[n,n] mit der Gesamtkettenlänge o=2n+2 Phenylringen (o > 10) und der Zahl n der Phenylringe in den p-Oligophenylsubstituenten am Spirobifluorenkern, dargestellt. Neben den symmetrischen Verbindungen wurden erstmals auch unsymmetrische Spiro-p-oligophenyle der allgemeinen Form Spiro-o-Φ[n,m] mit o=n+m+2 (o = 3-7) und n ≠ m synthetisiert. Aufgrund der sehr geringen Löslichkeit der größeren Verbindungen wurden löslichkeitssteigernde Substituenten an den endständigen Phenylringen angebracht. Bei den Verbindungen, die mit Trimethylsilyl-Gruppen (TMS-) in den endständigen meta-Positionen „3“ und „5“ substituiert wurden, konnte die Löslichkeit um mehrere Größenordnungen gesteigert werden, sodass die Darstellung der symmetrischen Verbindungen bis zu einer Kettenlänge von 16 Phenylringen möglich wurde. Nach erfolgreicher Synthese und Aufreinigung wurden die TMS-Gruppen wieder entfernt und die erhaltenen, unsubstituierten Verbindungen charakterisiert. Zusätzlich wurden auch die TMS-Derivate untersucht. Zur Charakterisierung zählten neben der Reinheits- und Strukturanalytik unter anderem auch spektroskopische (UV/Vis-Absorption, Fluoreszenz, Fluoreszenzquantenausbeute), elektrochemische (Cyclovoltammetrie) und thermische (Thermogravimetrie, Dynamische Differenzkalorimetrie) Untersuchungen. Hier wurde unter anderem der Einfluss der Kettenlänge und der Position der Spiroverknüpfung auf isomere Verbindungen gleicher Kettenlänge untersucht. Bei den spektroskopischen Messungen konnte eine Konvergenz der längstwelligen Absorptionsbanden, bzw. kürzestwelligen Fluoreszenzbanden mit zunehmender Kettenlänge beobachtet werden. Die effektive Konjugationslänge konnte so aus experimentellen Daten bestimmt werden zu 12 Phenylringen in der Absorption und 14 Phenylringen in der Fluoreszenz. Bei den Isomeren gleicher Kettenlänge zeigte sich in der Absorption eine hypsochrome Verschiebung der Absorptionsmaxima mit zunehmender Verschiebung der Spiroverknüpfung zum Kettenende hin, während die Position der Spiroverknüpfung keinen messbaren Einfluss auf die Verschiebung der Fluoreszenzbanden hatte. Die Substitution mit TMS in den meta-Positionen zeigte keinen messbaren Einfluss auf die Absorptions- bzw. Fluoreszenzbanden. Die elektrochemischen Untersuchungen zeigten mit zunehmender Kettenlänge eine erleichterte Oxidation und Reduktion, während bei Isomeren gleicher Kettenlänge die Oxidation mit Verschiebung der Spiroverknüpfung zum Kettenende hin erschwert und die Reduktion erleichtert war. Die thermogravimetrischen Analysen (TGA) zeigten eine außerordentlich hohe thermische Stabilität (5% Massenabnahme unter Schutzgas) der Spiro-p-oligophenyle von Td,5% = 474°C bei Spiro-5Φ[1,2] bis 570°C bei Spiro 8Φ[3,3]. Ebenso blieben hohe Rückstandsmassen unter Schutzgas bei 850°C zurück, wie das Beispiel Spiro 8Φ[3,3] mit 68% zeigt. Die Verbindungen zeigten hohe Schmelzpunkte (max. 496°C bei Spiro-6Φ[0,4]) und Glasübergangstemperaturen (max. 434°C bei p-TMS-Spiro-8Φ[3,3]). Viele der Verbindungen, besonders die in den meta-Positionen TMS-substituierten Verbindungen, bildeten stabile amorphe Gläser.
Resumo:
We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.
Resumo:
Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a geometric phase gate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov’s method yields considerably better results than either one of the two methods alone.