3 resultados para LEA proteins

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid droplets (LDs) are the universal storage form of fat as a reservoir of metabolic energy in animals, plants, bacteria and single celled eukaryotes. Dictyostelium LD formation was investigated in response to the addition of different nutrients to the growth medium. LDs were induced by adding exogenous cholesterol, palmitic acid (PA) as well as growth in bacterial suspension, while glucose addition fails to form LDs. Among these nutrients, PA addition is most effective to stimulate LD formation, and depletion of PA from the medium caused LD degradation. The neutral lipids incorporated into the LD-core are composed of triacylglycerol (TAG), steryl esters, and an unknown neutral lipid (UKL) species when the cells were loaded simultaneously with cholesterol and PA. In order to avoid the contamination with other cellular organelles, the LD-purification method was modified. The isolated LD fraction was analysed by mass spectrometry and 100 proteins were identified. Nineteen of these appear to be directly involved in lipid metabolism or function in regulating LD morphology. Together with a previous study, a total of 13 proteins from the LD-proteome were confirmed to localize to LDs after the induction with PA. Among the identified LD-proteins, the localization of Ldp (lipid droplet membrane protein), GPAT3 (glycerol-3-phosphate acyltransferase 3) and AGPAT3 (1-acylglycerol-3-phosphate-acyltransferase 3) were further verified by GFP-tagging at the N-termini or C-termini of the respective proteins. Fluorescence microscopy demonstrated that PA-treatment stimulated the translocation of the three proteins from the ER to LDs. In order to clarify DGAT (diacylglycerol acyltransferase) function in Dictyostelium, the localization of DGAT1, that is not present in LD-proteome, was also investigated. GFP-tagged DGAT1 localized to the ER both, in the presence and absence of PA, which is different from the previously observed localization of GFP-tagged DGAT2, which almost exclusively binds to LDs. The investigation of the cellular neutral lipid level helps to elucidate the mechanism responsible for LD-formation in Dictyostelium cells. Ldp and two short-chain dehydrogenases, ADH (alcohol dehydrogenase) and Ali (ADH-like protein), are not involved in neutral lipid biosynthesis. GPAT, AGPAT and DGAT are three transferases responsible for the three acylation steps of de novo TAG synthesis. Knock-out (KO) of AGPAT3 and DGAT2 did not affect storage-fat formation significantly, whereas cells lacking GPAT3 or DGAT1 decreased TAG and LD accumulation dramatically. Furthermore, DGAT1 is responsible for the accumulation of the unknown lipid UKL. Overexpression of DGAT2 can rescue the reduced TAG content of the DGAT1-KO mutant, but fails to restore UKL content in these cells, indicating that of DGAT1 and DGAT2 have overlapping functions in TAG synthesis, but the role in UKL formation is unique to DGAT1. Both GPAT3 and DGAT1 affect phagocytic activity. Mutation of GPAT3 increases it but a DGAT1-KO decreases phagocytosis. The double knockout of DGAT1 and 2 also impairs the ability to grow on a bacterial lawn, which again can be rescued by overexpression of DGAT2. These and other results are incorporated into a new model, which proposes that up-regulation of phagocytosis serves to replenish precursor molecules of membrane lipid synthesis, whereas phagocytosis is down-regulated when excess fatty acids are used for storage-fat formation.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes several important advancements in the understanding of the assembly of outer membrane proteins of Gram-negative bacteria like Escherichia coli. A first study was performed to identify binding regions in the trimeric chaperone Skp for outer membrane proteins. Skp is known to facilitate the passage of unfolded outer membrane proteins (OMPs) through the periplasm to the outer membrane (OM). A gene construct named “synthetic chaperone protein (scp)” gene was used to express a fusion protein (Scp) into the cytoplasm of E. coli. The scp gene was used as a template to design mutants of Scp suitable for structural and functional studies using site-directed spectroscopy. Fluorescence resonance energy transfer (FRET) was used to identify distances in Skp-OmpA complexes that separate regions in Scp and in outer membrane protein A (OmpA) from E. coli. For this study, single cysteine (Cys) mutants and single Cys - single tryptophan (Trp) double mutants of Scp were prepared. For FRET experiments, the cysteines were labeled with the tryptophan fluorescence energy acceptor IAEDANS. Single Trp mutants of OmpA were used as fluorescence energy donors. In the second part of this thesis, the function of BamD and the structure of BamD-Scp complexes were examined. BamD is an essential component of the β-barrel assembly machinery (BAM) complex of the OM of Gram-negative bacteria. Fluorescence spectroscopy was used to probe the interactions of BamD with lipid membranes and to investigate the interactions of BamD with possible partner proteins from the periplasm and from the OM. A range of single cysteine (Cys) and single tryptophan (Trp) mutants of BamD were prepared. A very important conclusion from the extensive FRET study is that the essential lipoprotein BamD interacts and binds to the periplasmic chaperone Skp. BamD contains tetratrico peptide repeat (TPR) motifs that are suggested to serve as docking sites for periplasmic chaperones such as Skp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Das ursprünglich in S. cerevisiae identifizierte Urm1 stellt aufgrund seiner dualen Funktionsweise ein besonderes UBL dar. In einem Prozess, der als Urmylierung bezeichnet wird, kann es ähnlich dem Ubiquitin kovalent mit anderen Proteinen verknüpft werden. Zusätzlich fungiert es aber auch als Schwefelträger, der an der Thiolierung des wobble-Uridins bestimmter cytoplasmatischer tRNAs beteiligt ist. Während neuere Untersuchungen zeigen, dass die Urm1-abhängige tRNA-Thiolierung zu einer effizienten Translation in Eukaryoten beiträgt, ist die Bedeutung der Urmylierung immer noch unklar. Um die Funktion der Urm1-vermittelten Proteinmodifikation weiter aufzuklären, wurde die Urmylierung des Peroxiredoxins Ahp1 im Rahmen dieser Arbeit näher untersucht. Es konnte demonstriert werden, dass Ahp1 nicht nur als Monomer, sondern auch als Dimer urmyliert vorliegt. Dies deutet darauf hin, dass die Urmylierung mit dem peroxidatischen Zyklus von Ahp1 verknüpft ist. Diese Annahme konnte durch die Untersuchung der Modifikation verschiedener ahp1-Punktmutanten bestätigt werden. Hierbei ließ sich ebenfalls zeigen, dass das Peroxiredoxin wahrscheinlich auch an alternativen Lysinresten urmyliert werden kann. Trotzdem bleibt unklar, inwiefern die Funktionalität von Ahp1 durch die Urm1-Konjugation beeinträchtigt wird. So konnte ein Einfluss der Urmylierung auf die Ahp1-vermittelte Entgiftung des Alkylhydroperoxids t-BOOH nicht festgestellt werden. Ein weiterer Schwerpunkt dieser Arbeit war die Untersuchung einer möglichen mechanistischen Verknüpfung beider Urm1-Funktionen. Es ließ sich zeigen, dass nicht nur Schwefelmangel, sondern auch ein Verlust der Schwefeltransferase Tum1 zu einer drastischen Reduktion der Urm1-Konjugation führt. Demnach wird die Urmylierung wahrscheinlich über denselben Schwefeltransferweg vermittelt, der ebenfalls zur tRNA-Thiolierung beiträgt. Trotzdem ist der Schwefeltransfer, der zur Urm1-Aktivierung führt, womöglich komplexer als bisher angenommen. Wurden die vermuteten katalytischen Cysteine des Urm1-Aktivatorproteins Uba4 mutiert oder dessen C-terminale RHD entfernt, waren eine gehemmte Urmylierung und tRNA-Thiolierung weiterhin nachweisbar. Somit scheint ein Schwefeltransfer auf Urm1 auch ohne direkte Beteiligung von Uba4 möglich zu sein. In dieser Arbeit ließ sich außerdem zeigen, dass Urm1 in Hefe durch sein humanes Homolog funktional ersetzt werden kann. Dies ist ein Hinweis dafür, dass der Urm1-Weg in allen Eukaryoten gleich funktioniert und konserviert ist. Darüber hinaus scheint für die Urmylierung auch eine Konservierung der Substratspezifität gegeben zu sein. Der Nachweis einer Uba4-Urmylierung in Hefe könnte durchaus darauf hindeuten.