4 resultados para Judgmental heuristics

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the asymptotics conjecture of Malle for dihedral groups Dl of order 2l, where l is an odd prime. We prove the expected lower bound for those groups. For the upper bounds we show that there is a connection to class groups of quadratic number fields. The asymptotic behavior of those class groups is predicted by the Cohen-Lenstra heuristics. Under the assumption of this heuristic we are able to prove the expected upper bounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das wohl bekannteste Phänomen der Urteils- und Entscheidungsforschung im Kontext numeri-scher Urteile ist der Ankereffekt. Dieser bezeichnet die Assimilation einer numerischen Schätzung oder Prognose an einen salienten Wert, dem sogenannten Anker, auch unabhängig von dessen inhaltlicher Relevanz. Die Frage nach den Ursachen von Ankereffekten wird bis zum aktuellen Zeitpunkt kontrovers diskutiert. Die Bedeutung eines Erklärungsmodelles, dem sogenannten numerischem Priming, innerhalb dieser Diskussion ist Gegenstand der vorliegenden Arbeit. Im Theorieteil wird zunächst der Ankereffekt, seine inhaltliche Einordnung und seine Relevanz aus theoretischer wie praktischer Sicht diskutiert. Des weiteren werden die gängigen Erklärungsmodelle zum Ankereffekt vorgestellt. Ein Schwerpunkt hierbei liegt auf einer kritischen Auseinandersetzung mit dem Modell der selektiven Zugänglichkeit (Selective Accessibility Model, kurz: SAM), dem wohl prominentesten Modell aus Sicht der momentanen Forschung. Zwei an den Theorieteil anschließende Fragestellungen sind dann der Gegenstand des empirischen Teils der Arbeit. Zum einen soll überprüft werden, ob Ankereffekte im Standardparadigma, wie bisher angenommen, allein auf den Prozessen des SAM basieren oder ob zusätzlich auch numerisches Priming am Zustandekommen des Ankereffektes in diesem Paradigma beteiligt ist. Zum anderen werden Voraussetzungen für das Auftreten von Ankereffekten durch numerisches Priming untersucht, inbesondere die als relevant eingeschätzte Bedeutung der Aufmerksamkeit gegenüber dem Ankerwert. Beide Experimente verwenden neue, im Kontext von Ankereffekten bisher nicht eingesetzte experimentelle Paradigmen. Um die Bedeutung semantischer Prozesse im Zusammenspiel mit numerischen Prozessen zu untersuchen, wird ein so genannter Objektvergleich eingesetzt. Der Stellenwert von Aufmerksamkeit hingegen wird überprüft, in dem die Ankerwerte subliminal, also unterhalb der Wahrnehmungsschwelle, präsentiert werden. Beiden Experimenten ist jeweils eine Voruntersuchung vorangestellt, die notwendige Bedingungen für die entsprechenden Experimente überprüfen. In der abschließenden Diskussion werden die Ergebnisse der beiden Untersuchungen noch einmal zusammengefasst, und deren Implikationen angesichts der bisher vorliegenden Erkenntnisse aus theoretischer wie praktischer Sicht diskutiert. Des weiteren werden mögliche Forschungsfragen und denkbare experimentelle Untersuchungen hierzu skizziert, die an die innerhalb dieser Arbeit vorgelegten Ergebnisse sinnvoll anschließen könnten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the present research, we investigated effects of existential threat on veracity judgments. According to several meta-analyses, people judge potentially deceptive messages of other people as true rather than as false (so-called truth bias). This judgmental bias has been shown to depend on how people weigh the error of judging a true message as a lie (error 1) and the error of judging a lie as a true message (error 2). The weight of these errors has been further shown to be affected by situational variables. Given that research on terror management theory has found evidence that mortality salience (MS) increases the sensitivity toward the compliance of cultural norms, especially when they are of focal attention, we assumed that when the honesty norm is activated, MS affects judgmental error weighing and, consequently, judgmental biases. Specifically, activating the norm of honesty should decrease the weight of error 1 (the error of judging a true message as a lie) and increase the weight of error 2 (the error of judging a lie as a true message) when mortality is salient. In a first study, we found initial evidence for this assumption. Furthermore, the change in error weighing should reduce the truth bias, automatically resulting in better detection accuracy of actual lies and worse accuracy of actual true statements. In two further studies, we manipulated MS and honesty norm activation before participants judged several videos containing actual truths or lies. Results revealed evidence for our prediction. Moreover, in Study 3, the truth bias was increased after MS when group solidarity was previously emphasized.