7 resultados para Iteration
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Aufgrund ihrer Vorteile hinsichtlich Dauerhaftigkeit und Bauwerkssicherheit ist in Deutschland seit 1998 die externe Vorspannung in Hohlkastenbrücken zur Regelbauweise geworden. Durch Verwendung der austauschbaren externen Vorspannung verspricht man sich im Brückenbau weitere Verbesserungen der Robustheit und damit eine Verlängerung der Lebensdauer. Trotz des besseren Korrosionsschutzes im Vergleich zur internen Vorspannung mit Verbund sind Schäden nicht völlig auszuschließen. Um die Vorteile der externen Vorspannung zu nutzen, ist daher eine periodische Überwachung der Spanngliedkräfte, z. B. während der Hauptprüfung des Bauwerks, durchzuführen. Für die Überwachung der Spanngliedkräfte bei Schrägseilbrücken haben sich die Schwingungsmessmethoden als wirtschaftlich und leistungsfähig erwiesen. Für die Übertragung der Methode auf den Fall der externen Vorspannung, wo kürzere Schwingungslängen vorliegen, waren zusätzliche Untersuchungen hinsichtlich der effektiven Schwingungslänge, der Randbedingungen sowie der effektiven Biegesteifigkeit erforderlich. Im Rahmen der vorliegenden Arbeit wurde das Modellkorrekturverfahren, basierend auf der iterativen Anpassung eines F.E.-Modells an die identifizierten Eigenfrequenzen und Eigenformen des Spanngliedes, für die Bestimmung der Spanngliedkräfte verwendet. Dieses Verfahren ermöglicht die Berücksichtigung der Parameter (Schwingungslänge, Randbedingungen und effektive Biegesteifigkeit) bei der Identifikation der effektiven Spanngliedkräfte. Weiterhin ist eine Modellierung jeder beliebigen Spanngliedausbildung, z. B. bei unterschiedlichen Querschnitten in den Verankerungs- bzw. Umlenkbereichen, gewährleistet. Zur Anwendung bei der Ermittlung der Spanngliedkräfte wurde eine spezielle Methode, basierend auf den besonderen dynamischen Eigenschaften der Spannglieder, entwickelt, bei der die zuvor genannten Parameter innerhalb jedes Iterationsschrittes unabhängig korrigiert werden, was zur Robustheit des Identifikationsverfahrens beiträgt. Das entwickelte Verfahren ist in einem benutzerfreundlichen Programmsystem implementiert worden. Die erzielten Ergebnisse wurden mit dem allgemeinen Identifikationsprogramm UPDATE_g2 verglichen; dabei ist eine sehr gute Übereinstimmung festgestellt worden. Beim selbst entwickelten Verfahren wird die benötigte Rechenzeit auf ca. 30 % reduziert [100 sec à 30 sec]. Es bietet sich daher für die unmittelbare Auswertung vor Ort an. Die Parameteridentifikationsverfahren wurden an den Spanngliedern von insgesamt sechs Brücken (vier unterschiedliche Spannverfahren) angewendet. Die Anzahl der getesteten Spannglieder beträgt insgesamt 340. Die Abweichung zwischen den durch Schwingungs-messungen identifizierten und gemessenen (bei einer Brücke durch eine Abhebekontrolle) bzw. aufgebrachten Spanngliedkräften war kleiner als 3 %. Ferner wurden die Auswirkungen äußerer Einflüsse infolge Temperaturschwankungen und Verkehr bei den durchgeführten Messungen untersucht. Bei der praktischen Anwendung sind Besonderheiten aufgetreten, die durch die Verwendung des Modellkorrekturverfahrens weitgehend erfasst werden konnten. Zusammenfassend lässt sich sagen, dass die Verwendung dieses Verfahrens die Genauigkeit im Vergleich mit den bisherigen Schwingungsmessmethoden beachtlich erhöht. Ferner wird eine Erweiterung des Anwendungsbereiches auch auf Spezialfälle (z. B. bei einem unplanmäßigen Anliegen) gewährleistet.
Resumo:
Evolutionäre Algorithmen werden gerne für Optimierungsaufgaben mit sehr vielen Freiheitsgraden eingesetzt. Eine spezielle Konvergenzeigenschaft, daß nämlich der Rechenaufwand nur mit der Wurzel der Anzahl der Unbekannten steigt, prädestiniert sie dafür. Die evolutionären Algorithmen haben aber auch noch eine weitere interessante Eigenschaft: Von der Zielfunktion wird nur verlangt, daß sie monoton ist - nichts weiter. Speziell wird, im Gegensatz zu gradientenbasierten Verfahren, keinerlei Ableitung von der Zielfunktion benötigt. Dadurch können evolutionäre Algorithmen auch in solchen Fällen eingesetzt werden, in denen Ableitungen der Zielfunktion nicht oder nur schwierig zu beschaffen sind. Die evolutionären Algorithmen kommen deshalb mit so geringen Anforderungen an die Zielfunktion aus, weil nur absolute Bewertungen einzelner Punkte (hier Vektoren) im Lösungsraum durch die Zielfunktion vorgenommen werden. Dafür werden eine gewisse Anzahl Punkte gleichzeitig betrachtet. Im direkten Vergleich untereinander relativ günstig liegende Punkte werden für die weitere Rechnung übernommen, die anderen verworfen. Aus den Komponenten der übernommenen Punkte werden nun zufällig neue Punkte zusammengesetzt und ein wenig verschoben. Dann schließt sich der Kreis, indem diese neuen Punkte ebenfalls bewertet werden. Im Verlauf einer solchen Iteration konvergiert die Punktmenge in der Regel gegen ein Optimum. Oft kommt es gerade zu Beginn der Iteration zu schnellen Fortschritten. In dieser Arbeit wird ein Verfahren vorgestellt, bei dem mit Hilfe von evolutionären Algorithmen verbessernde Eingriffe in laufenden Echtzeitsystemen vorgenommen werden. Was gut oder schlecht ist, wird zu diesem Zweck über die Zielfunktion für die Optimierung definiert. Da von der Zielfunktion letztlich das Verhalten des Gesamtsystems abhängt, sollte sie sorgfältig ausgewählt werden. Die Eingriffe in das System sind zeitlich begrenzte Steuertrajektorien. Sie werden zusätzlich zur permanent wirkenden Regelung auf das System aufgebracht. Um die Anzahl der zu optimierenden Variablen in Grenzen zu halten, werden die Steuertrajektorien durch wenige Parameter repräsentiert. Da die Steuertrajektorien im voraus berechnet werden müssen, wird das Systemverhalten mittels eines Modells für eine gewisse, in der Zukunft liegende, Zeitspanne vorhergesagt. Wird die geforderte Qualität während dieser Zeitspanne unterschritten, kann so schon im Vorfeld ein Optimierungslauf des evolutionären Algorithmus durchgeführt werden. Allerdings ist die zur Verfügung stehende Rechenzeit von vornherein begrenzt. Daher ist es wesentlich, daß die mit evolutionären Algorithmen häufig assoziierte lange Rechenzeit nicht benötigt wird. Tatsächlich läßt sich unter Umständen mit wenig Rechenzeit auskommen. Erstens wird nur mit wenigen Variablen gerechnet, zweitens kommt es bei dem beschriebenen Verfahren - halbwegs gutmütige Systeme vorausgesetzt - gar nicht auf die letzte Nachkommastelle, sondern (ähnlich wie bei Sliding-Mode-Regelungen) mehr auf eine Tendenz an. Da evolutionäre Algorithmen aber gerade zu Beginn einer Iteration die größten Fortschritte in Richtung des Optimums machen, kann schon nach vergleichsweise wenigen Schritten eine deutliche Verbesserung der Gesamtsituation erreicht werden. Gerade um eine schnelle Konvergenz zu erreichen, sind die spezielle Ausprägung und die Parameter des evolutionären Algorithmus mit Bedacht zu wählen. Dafür werden im Rahmen der Arbeit einige Experimente durchgeführt. Anhand der Ergebnisse der Experimente können konkrete Empfehlungen für eine günstige Konfiguration des evolutionären Algorithmus gegeben werden. Um es vorwegzunehmen: Zuviel Aufwand beim evolutionären Algorithmus zu treiben, lohnt sich nicht. Schon mit einfachen Konfigurationen können gute Ergebnisse erzielt werden. Die einzige Maßnahme, die sich bei den Experimenten tatsächlich als vorteilhaft herausstellte, war die Aufteilung der Gesamtpopulation (betrachtete Punktmenge im Lösungsraum) in mehrere Subpopulationen. Schließlich wird noch ein Computerprogramm beschrieben, das die Arbeitsweise des vorgestellten Verfahrens am Bildschirm erlebbar macht. Die einzelnen Komponenten werden vom Programm während der Ausführung mit einigen wesentlichen Rechengrößen visualisiert. Der Betrachter erhält so einen besseren Eindruck vom Zusammenwirken der einzelnen Verfahrens-Teile.
Resumo:
Die Untersuchung des dynamischen aeroelastischen Stabilitätsverhaltens von Flugzeugen erfordert sehr komplexe Rechenmodelle, welche die wesentlichen elastomechanischen und instationären aerodynamischen Eigenschaften der Konstruktion wiedergeben sollen. Bei der Modellbildung müssen einerseits Vereinfachungen und Idealisierungen im Rahmen der Anwendung der Finite Elemente Methode und der aerodynamischen Theorie vorgenommen werden, deren Auswirkungen auf das Simulationsergebnis zu bewerten sind. Andererseits können die strukturdynamischen Kenngrößen durch den Standschwingungsversuch identifiziert werden, wobei die Ergebnisse Messungenauigkeiten enthalten. Für eine robuste Flatteruntersuchung müssen die identifizierten Unwägbarkeiten in allen Prozessschritten über die Festlegung von unteren und oberen Schranken konservativ ermittelt werden, um für alle Flugzustände eine ausreichende Flatterstabilität sicherzustellen. Zu diesem Zweck wird in der vorliegenden Arbeit ein Rechenverfahren entwickelt, welches die klassische Flatteranalyse mit den Methoden der Fuzzy- und Intervallarithmetik verbindet. Dabei werden die Flatterbewegungsgleichungen als parameterabhängiges nichtlineares Eigenwertproblem formuliert. Die Änderung der komplexen Eigenlösung infolge eines veränderlichen Einflussparameters wird mit der Methode der numerischen Fortsetzung ausgehend von der nominalen Startlösung verfolgt. Ein modifizierter Newton-Iterations-Algorithmus kommt zur Anwendung. Als Ergebnis liegen die berechneten aeroelastischen Dämpfungs- und Frequenzverläufe in Abhängigkeit von der Fluggeschwindigkeit mit Unschärfebändern vor.
Resumo:
Mit der vorliegenden Arbeit soll ein Beitrag zu einer (empirisch) gehaltvollen Mikrofundierung des Innovationsgeschehens im Rahmen einer evolutorischen Perspektive geleistet werden. Der verhaltensbezogene Schwerpunkt ist dabei, in unterschiedlichem Ausmaß, auf das Akteurs- und Innovationsmodell von Herbert Simon bzw. der Carnegie-School ausgerichtet und ergänzt, spezifiziert und erweitert dieses unter anderem um vertiefende Befunde der Kreativitäts- und Kognitionsforschung bzw. der Psychologie und der Vertrauensforschung sowie auch der modernen Innovationsforschung. zudem Bezug auf einen gesellschaftlich und ökonomisch relevanten Gegenstandsbereich der Innovation, die Umweltinnovation. Die Arbeit ist sowohl konzeptionell als auch empirisch ausgerichtet, zudem findet die Methode der Computersimulation in Form zweier Multi-Agentensysteme Anwendung. Als zusammenfassendes Ergebnis lässt sich im Allgemeinen festhalten, dass Innovationen als hochprekäre Prozesse anzusehen sind, welche auf einer Verbindung von spezifischen Akteursmerkmalen, Akteurskonstellationen und Umfeldbedingungen beruhen, Iterationsschleifen unterliegen (u.a. durch Lernen, Rückkoppelungen und Aufbau von Vertrauen) und Teil eines umfassenderen Handlungs- sowie (im Falle von Unternehmen) Organisationskontextes sind. Das Akteurshandeln und die Interaktion von Akteuren sind dabei Ausgangspunkt für Emergenzen auf der Meso- und der Makroebene. Die Ergebnisse der Analysen der in dieser Arbeit enthaltenen fünf Fachbeiträge zeigen im Speziellen, dass der Ansatz von Herbert Simon bzw. der Carnegie-School eine geeignete theoretische Grundlage zur Erfassung einer prozessorientierten Mikrofundierung des Gegenstandsbereichs der Innovation darstellt und – bei geeigneter Ergänzung und Adaption an den jeweiligen Erkenntnisgegenstand – eine differenzierte Betrachtung unterschiedlicher Arten von Innovationsprozessen und deren akteursbasierten Grundlagen sowohl auf der individuellen Ebene als auch auf Ebene von Unternehmen ermöglicht. Zudem wird deutlich, dass der Ansatz von Herbert Simon bzw. der Carnegie-School mit dem Initiationsmodell einen zusätzlichen Aspekt in die Diskussion einbringt, welcher bislang wenig Aufmerksamkeit fand, jedoch konstitutiv für eine ökonomische Perspektive ist: die Analyse der Bestimmungsgrößen (und des Prozesses) der Entscheidung zur Innovation. Denn auch wenn das Verständnis der Prozesse bzw. der Determinanten der Erstellung, Umsetzung und Diffusion von Innovationen von grundlegender Bedeutung ist, ist letztendlich die Frage, warum und unter welchen Umständen Akteure sich für Innovationen entscheiden, ein zentraler Kernbereich einer ökonomischen Betrachtung. Die Ergebnisse der Arbeit sind auch für die praktische Wirtschaftspolitik von Bedeutung, insbesondere mit Blick auf Innovationsprozesse und Umweltwirkungen.
Resumo:
Im Rahmen dieser Arbeit wird eine gemeinsame Optimierung der Hybrid-Betriebsstrategie und des Verhaltens des Verbrennungsmotors vorgestellt. Die Übernahme von den im Steuergerät verwendeten Funktionsmodulen in die Simulationsumgebung für Fahrzeuglängsdynamik stellt eine effiziente Applikationsmöglichkeit der Originalparametrierung dar. Gleichzeitig ist es notwendig, das Verhalten des Verbrennungsmotors derart nachzubilden, dass das stationäre und das dynamische Verhalten, inklusive aller relevanten Einflussmöglichkeiten, wiedergegeben werden kann. Das entwickelte Werkzeug zur Übertragung der in Ascet definierten Steurgerätefunktionen in die Simulink-Simulationsumgebung ermöglicht nicht nur die Simulation der relevanten Funktionsmodule, sondern es erfüllt auch weitere wichtige Eigenschaften. Eine erhöhte Flexibilität bezüglich der Daten- und Funktionsstandänderungen, sowie die Parametrierbarkeit der Funktionsmodule sind Verbesserungen die an dieser Stelle zu nennen sind. Bei der Modellierung des stationären Systemverhaltens des Verbrennungsmotors erfolgt der Einsatz von künstlichen neuronalen Netzen. Die Auswahl der optimalen Neuronenanzahl erfolgt durch die Betrachtung des SSE für die Trainings- und die Verifikationsdaten. Falls notwendig, wird zur Sicherstellung der angestrebten Modellqualität, das Interpolationsverhalten durch Hinzunahme von Gauß-Prozess-Modellen verbessert. Mit den Gauß-Prozess-Modellen werden hierbei zusätzliche Stützpunkte erzeugt und mit einer verminderten Priorität in die Modellierung eingebunden. Für die Modellierung des dynamischen Systemverhaltens werden lineare Übertragungsfunktionen verwendet. Bei der Minimierung der Abweichung zwischen dem Modellausgang und den Messergebnissen wird zusätzlich zum SSE das 2σ-Intervall der relativen Fehlerverteilung betrachtet. Die Implementierung der Steuergerätefunktionsmodule und der erstellten Steller-Sensor-Streckenmodelle in der Simulationsumgebung für Fahrzeuglängsdynamik führt zum Anstieg der Simulationszeit und einer Vergrößerung des Parameterraums. Das aus Regelungstechnik bekannte Verfahren der Gütevektoroptimierung trägt entscheidend zu einer systematischen Betrachtung und Optimierung der Zielgrößen bei. Das Ergebnis des Verfahrens ist durch das Optimum der Paretofront der einzelnen Entwurfsspezifikationen gekennzeichnet. Die steigenden Simulationszeiten benachteiligen Minimumsuchverfahren, die eine Vielzahl an Iterationen benötigen. Um die Verwendung einer Zufallsvariablen, die maßgeblich zur Steigerung der Iterationanzahl beiträgt, zu vermeiden und gleichzeitig eine Globalisierung der Suche im Parameterraum zu ermöglichen wird die entwickelte Methode DelaunaySearch eingesetzt. Im Gegensatz zu den bekannten Algorithmen, wie die Partikelschwarmoptimierung oder die evolutionären Algorithmen, setzt die neu entwickelte Methode bei der Suche nach dem Minimum einer Kostenfunktion auf eine systematische Analyse der durchgeführten Simulationsergebnisse. Mit Hilfe der bei der Analyse gewonnenen Informationen werden Bereiche mit den bestmöglichen Voraussetzungen für ein Minimum identifiziert. Somit verzichtet das iterative Verfahren bei der Bestimmung des nächsten Iterationsschrittes auf die Verwendung einer Zufallsvariable. Als Ergebnis der Berechnungen steht ein gut gewählter Startwert für eine lokale Optimierung zur Verfügung. Aufbauend auf der Simulation der Fahrzeuglängsdynamik, der Steuergerätefunktionen und der Steller-Sensor-Streckenmodelle in einer Simulationsumgebung wird die Hybrid-Betriebsstrategie gemeinsam mit der Steuerung des Verbrennungsmotors optimiert. Mit der Entwicklung und Implementierung einer neuen Funktion wird weiterhin die Verbindung zwischen der Betriebsstrategie und der Motorsteuerung erweitert. Die vorgestellten Werkzeuge ermöglichten hierbei nicht nur einen Test der neuen Funktionalitäten, sondern auch eine Abschätzung der Verbesserungspotentiale beim Verbrauch und Abgasemissionen. Insgesamt konnte eine effiziente Testumgebung für eine gemeinsame Optimierung der Betriebsstrategie und des Verbrennungsmotorverhaltens eines Hybridfahrzeugs realisiert werden.