2 resultados para Isolated outputs
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Neueste Entwicklungen in Technologien für dezentrale Energieversorgungsstrukturen, erneuerbare Energien, Großhandelsenergiemarkt, Mini- und Mikronetze, verteilte Intelligenz, sowie Informations- und Datenübertragungstechnologien werden die zukünftige Energiewelt maßgeblich bestimmen. Die derzeitigen Forschungsbemühungen zur Vernutzung aller dieser Technologien bilden die Voraussetzungen für ein zukünftiges, intelligentes Stromnetz. Dieses neue Konzept gründet sich auf die folgenden Säulen: Die Versorgung erfolgt durch dezentrale Erzeugungsanlagen und nicht mehr durch große zentrale Erzeuger; die Steuerung beeinflusst nicht mehr allein die Versorgung sondern ermöglich eine auch aktive Führung des Bedarf; die Eingabeparameter des Systems sind nicht mehr nur mechanische oder elektrische Kenngrößen sondern auch Preissignale; die erneuerbaren Energieträger sind nicht mehr nur angeschlossen, sondern voll ins Energienetz integriert. Die vorgelegte Arbeit fügt sich in dieses neue Konzept des intelligenten Stromnetz ein. Da das zukünftige Stromnetz dezentral konfiguriert sein wird, ist eine Übergangsphase notwendig. Dieser Übergang benötigt Technologien, die alle diese neue Konzepte in die derzeitigen Stromnetze integrieren können. Diese Arbeit beweist, dass ein Mininetz in einem Netzabschnitt mittlerer Größe als netzschützende Element wirken kann. Hierfür wurde ein neues Energiemanagementsystem für Mininetze – das CMS (englisch: Cluster Management System) – entwickelt. Diese CMS funktioniert als eine von ökonomischorientierte Betriebsoptimierung und wirkt wie eine intelligente Last auf das System ein, reagierend auf Preissignale. Sobald wird durch eine Frequenzsenkung eine Überlastung des Systems bemerkt, ändert das Mininetz sein Verhalten und regelt seine Belastung, um die Stabilisierung des Hauptnetzes zu unterstützen. Die Wirksamkeit und die Realisierbarkeit des einwickelten Konzept wurde mit Hilfe von Simulationen und erfolgreichen Laborversuchen bewiesen.
Resumo:
To various degrees, insects in nature adapt to and live with two fundamental environmental rhythms around them: (1) the daily rhythm of light and dark, and (2) the yearly seasonal rhythm of the changing photoperiod (length of light per day). It is hypothesized that two biological clocks evolved in organisms on earth which allow them to harmonize successfully with the two environmental rhythms: (1) the circadian clock, which orchestrates circadian rhythms in physiology and behavior, and (2) the photoperiodic clock, which allows for physiological adaptations to changes in photoperiod during the course of the year (insect photoperiodism). The circadian rhythm is endogenous and continues in constant conditions, while photoperiodism requires specific light inputs of a minimal duration. Output pathways from both clocks control neurosecretory cells which regulate growth and reproduction. This dissertation focuses on the question whether different photoperiods change the network and physiology of the circadian clock of an originally equatorial cockroach species. It is assumed that photoperiod-dependent plasticity of the cockroach circadian clock allows for adaptations in physiology and behavior without the need for a separate photoperiodic clock circuit. The Madeira cockroach Rhyparobia maderae is a well established circadian clock model system. Lesion and transplantation studies identified the accessory medulla (aMe), a small neuropil with about 250 neurons, as the cockroach circadian pacemaker. Among them, the pigment-dispersing factor immunoreactive (PDF-ir) neurons anterior to the aMe (aPDFMes) play a key role as inputs to and outputs of the circadian clock system. The aim of my doctoral thesis was to examine whether and how different photoperiods modify the circadian clock system. With immunocytochemical studies, three-dimensional (3D) reconstruction, standardization and Ca2+-imaging technique, my studies revealed that raising cockroaches in different photoperiods changed the neuronal network of the circadian clock (Wei and Stengl, 2011). In addition, different photoperiods affected the physiology of single, isolated circadian pacemaker neurons. This thesis provides new evidence for the involvement of the circadian clock in insect photoperiodism. The data suggest that the circadian pacemaker system of the Madeira cockroach has the plasticity and potential to allow for physiological adaptations to different photoperiods. Therefore, it may express also properties of a photoperiodic clock.