5 resultados para Irrigated by sprinkler
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Little is known about the sustainability of irrigated oasis agriculture in northern Oman. The objective of this study therefore was to examine which factors allowed agricultural productivity to be apparently maintained during the two millenia of a mountain oasis’ existence. Soil moisture and physico-chemical properties were measured in a typical flood-irrigated field sown to alfalfa (Medicago sativa L.). Particle size, organic (C_org) and inorganic carbon content, pH and electrical conductivity (EC)of the soil profile were analyzed at 0.15, 0.45 and 1.00 m. Saturated hydraulic conductivity and the soil’s apparent bulk density and water potential were determined from undisturbed samples at 0.05, 0.25 and 0.60 m. During irrigation cycles of 6–9 days, volumetric water contents ranged from 30% to 13%. A tracer experiment with potassium bromide revealed that 52–56% of the irrigation water was stored in the upper 0.4 m of the soil. The rest of the water moved further down the profile, thus providing the necessary drainage to avoid the build-up of toxic salt concentrations. Due to differences in pore size, plant-available water in the topsoil amounted to 18.7% compared to 13% and 13.5% at 0.25- and 0.60-m depth, respectively. The aggregate structure in the upper 1.0 m of the profile is likely preserved by concentrations of calcium carbonate (CaCO3) from 379 to 434 mg kg^-1 and C_org from 157 to 368 mg kg^-1 soil. The data indicate that the sustainability of this irrigated landuse system is due to high water quality with low sodium but high CaCO3 concentration, the elaborate terrace structure and water management which allows adequate drainage.
Resumo:
Little is known about gaseous carbon (C) and nitrogen (N) emissions from traditional terrace agriculture in irrigated high mountain agroecosystems of the subtropics. In an effort towards filling this knowledge gap measurements of carbon dioxide (CO_2), methane (CH_4), ammonia (NH_3) and dinitrous oxide (N_2O) were taken with a mobile photoacoustic infrared multi-gas monitor on manure-filled PE-fibre storage bags and on flood-irrigated untilled and tilled fields in three mountain oases of the northen Omani Al Jabal al Akhdar mountains. During typical 9-11 day irrigation cycles of March, August and September 2006 soil volumetric moisture contents of fields dominated by fodder wheat, barley, oats and pomegranate ranged from 46-23%. While manure incorporation after application effectively reduced gaseous N losses, prolonged storage of manure in heaps or in PE-fibre bags caused large losses of C and N. Given the large irrigation-related turnover of organic C, sustainable agricultural productivity of oasis agriculture in Oman seems to require the integration of livestock which allows for several applications of manure per year at individual rates of 20 t dry matter ha^−1.
Resumo:
This study describes a combined empirical/modeling approach to assess the possible impact of climate variability on rice production in the Philippines. We collated climate data of the last two decades (1985-2002) as well as yield statistics of six provinces of the Philippines, selected along a North-South gradient. Data from the climate information system of NASA were used as input parameters of the model ORYZA2000 to determine potential yields and, in the next steps, the yield gaps defined as the difference between potential and actual yields. Both simulated and actual yields of irrigated rice varied strongly between years. However, no climate-driven trends were apparent and the variability in actual yields showed no correlation with climatic parameters. The observed variation in simulated yields was attributable to seasonal variations in climate (dry/wet season) and to climatic differences between provinces and agro-ecological zones. The actual yield variation between provinces was not related to differences in the climatic yield potential but rather to soil and management factors. The resulting yield gap was largest in remote and infrastructurally disfavored provinces (low external input use) with a high production potential (high solar radiation and day-night temperature differences). In turn, the yield gap was lowest in central provinces with good market access but with a relatively low climatic yield potential. We conclude that neither long-term trends nor the variability of the climate can explain current rice yield trends and that agroecological, seasonal, and management effects are over-riding any possible climatic variations. On the other hand the lack of a climate-driven trend in the present situation may be superseded by ongoing climate change in the future.
Resumo:
In Oman, during the last three decades, agricultural water use and groundwater extraction has dramatically increased to meet the needs of a rapidly growing population and major changes in lifestyle. This has triggered agricultural land-use changes which have been poorly investigated. In view of this our study aimed at analysing patterns of shortterm land-use changes (2007-2009) in the five irrigated mountain oases of Ash Sharayjah, Al’Ayn, Al’Aqr, Qasha’ and Masayrat ar Ruwajah situated in the northern Oman Hajar mountains of Al Jabal Al Akhdar where competitive uses of irrigation water are particularly apparent. Comprehensive GIS-based field surveys were conducted over three years to record changes in terrace use in these five oases where farmers have traditionally adapted to rain-derived variations of irrigation water supply, e.g. by leaving agricultural terraces of annual crops uncultivated in drought years. Results show that the area occupied with field crops decreased in the dry years of 2008 and 2009 for all oases. In Ash Sharayjah, terrace areas grown with field crops declined from 4.7 ha (32.4 % of total terrace area) in 2007 to 3.1 ha (21.6 %) in 2008 and 3.0 ha (20.5 %) in 2009. Similarly, the area proportion of field crops shrunk in Al’Ayn, Qasha’ and Masayrat from 35.2, 36.3 and 49.6 % in 2007 to 19.8, 8.5 and 41.3 % in 2009, respectively. In Al’Aqr, the area of field crops slightly increased from 0.3 ha (17.0 %) in 2007 to 0.7 (39.1 %) in 2008, and decreased to 0.5 ha (28.8 %) in 2009. During the same period annual dry matter yields of the cash crop garlic in Ash Sharayjah increased from 16.3 t ha-1 in 2007 to 19.8 t ha-1 in 2008 and 18.3 t ha-1 in 2009, while the same crop yielded only 0.4, 1.6 and 1.1 t ha-1 in Masayrat. In 2009, the total estimated agricultural area of the new town of Sayh Qatanah above the five oases was around 13.5 ha. Our results suggest that scarcity of irrigation water as a result of low precipitation and increased irrigation and home water consumption in the new urban settlements above the five oases have led to major shifts in the land-use pattern and increasingly threaten the centuries-long tradition and drought-resilience of agriculture in the oases of the studied watershed.
Resumo:
Agriculture in semi-arid and arid regions is constantly gaining importance for the security of the nutrition of humankind because of the rapid population growth. At the same time, especially these regions are more and more endangered by soil degradation, limited resources and extreme climatic conditions. One way to retain soil fertility under these conditions in the long run is to increase the soil organic matter. Thus, a two-year field experiment was conducted to test the efficiency of activated charcoal and quebracho tannin extract as stabilizers of soil organic matter on a sandy soil low in nutrients in Northern Oman. Both activated charcoal and quebracho tannin extract were either fed to goats and after defecation applied to the soil or directly applied to the soil in combination with dried goat manure. Regardless of the application method, both additives reduced decomposition of soil-applied organic matter and thus stabilized and increased soil organic carbon. The nutrient release from goat manure was altered by the application of activated charcoal and quebracho tannin extract as well, however, nutrient release was not always slowed down. While activated charcoal fed to goats, was more effective in stabilising soil organic matter and in reducing nutrient release than mixing it, for quebracho tannin extract the opposite was the case. Moreover, the efficiency of the additives was influenced by the cultivated crop (sweet corn and radish), leading to unexplained interactions. The reduced nutrient release caused by the stabilization of the organic matter might be the reason for the reduced yields for sweet corn caused by the application of manure amended with activated charcoal and quebracho tannin extract. Radish, on the other hand, was only inhibited by the presence of quebracho tannin extract but not by activated charcoal. This might be caused by a possible allelopathic effect of tannins on crops. To understand the mechanisms behind the changes in manure, in the soil, in the mineralisation and the plant development and to resolve detrimental effects, further research as recommended in this dissertation is necessary. Particularly in developing countries poor in resources and capital, feeding charcoal or tannins to animals and using their faeces as manure may be promising to increase soil fertility, sequester carbon and reduce nutrient losses, when yield reductions can be resolved.