3 resultados para Irradiated seafood
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Like many developed coastal cities, San Diego, California has strong geographic and recreational ties to the adjacent ocean, but weak culinary ones. Less than 10% of the seafood consumed in the U.S., and San Diego in particular, is domestic. The popularity and abundance of farmers’ markets and other local markets in San Diego indicates an interest among producers and the public alike in cultivating local, diverse food systems, but this trend has been slower to catch on for seafood. The goal of this project was, therefore, to define and begin to understand the influences on the patterns of locally sourced, domestic seafood availability in San Diego. This study focused on seafood availability in seafood markets including researching market websites and contacting seafood counter managers to determine the general frequency (consistent, occasional, none) at which the markets sold seafood produced by San Diego fishermen or aquafarmers. Seafood market locations were mapped, and demographic and spatial information was gathered for each market’s zip code. The results of the study revealed that only 8% of San Diego’s 86 seafood markets consistently carried San Diego-sourced seafood, and 14% of markets carried it on occasion. Increased density of these local seafood markets was correlated with proximity to the coast, with almost 80% of the markets located within 2 km of the coast. Neither per capita income nor racial diversity was correlated with local seafood market density, indicating that factors contributing to coastal isolation matter more than wealth or diversity in determining where local seafood is sold. The geographic disparity in local seafood availability may be due to a variety of factors, including a small fishing fleet, prevalence of imported seafood, limited waterfront and urban infrastructure needed to support a local seafood system, and a lack of public awareness about local fisheries. Information gleaned from this study can inform further investigation into the influences on local, equitable seafood systems, as well as help consumers, producers and marketers to make informed decisions about seafood purchases and marketing efforts.
Resumo:
This work focuses on the analysis of the influence of environment on the relative biological effectiveness (RBE) of carbon ions on molecular level. Due to the high relevance of RBE for medical applications, such as tumor therapy, and radiation protection in space, DNA damages have been investigated in order to understand the biological efficiency of heavy ion radiation. The contribution of this study to the radiobiology research consists in the analysis of plasmid DNA damages induced by carbon ion radiation in biochemical buffer environments, as well as in the calculation of the RBE of carbon ions on DNA level by mean of scanning force microscopy (SFM). In order to study the DNA damages, besides the common electrophoresis method, a new approach has been developed by using SFM. The latter method allows direct visualisation and measurement of individual DNA fragments with an accuracy of several nanometres. In addition, comparison of the results obtained by SFM and agarose gel electrophoresis methods has been performed in the present study. Sparsely ionising radiation, such as X-rays, and densely ionising radiation, such as carbon ions, have been used to irradiate plasmid DNA in trishydroxymethylaminomethane (Tris buffer) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES buffer) environments. These buffer environments exhibit different scavenging capacities for hydroxyl radical (HO0), which is produced by ionisation of water and plays the major role in the indirect DNA damage processes. Fragment distributions have been measured by SFM over a large length range, and as expected, a significantly higher degree of DNA damages was observed for increasing dose. Also a higher amount of double-strand breaks (DSBs) was observed after irradiation with carbon ions compared to X-ray irradiation. The results obtained from SFM measurements show that both types of radiation induce multiple fragmentation of the plasmid DNA in the dose range from D = 250 Gy to D = 1500 Gy. Using Tris environments at two different concentrations, a decrease of the relative biological effectiveness with the rise of Tris concentration was observed. This demonstrates the radioprotective behavior of the Tris buffer solution. In contrast, a lower scavenging capacity for all other free radicals and ions, produced by the ionisation of water, was registered in the case of HEPES buffer compared to Tris solution. This is reflected in the higher RBE values deduced from SFM and gel electrophoresis measurements after irradiation of the plasmid DNA in 20 mM HEPES environment compared to 92 mM Tris solution. These results show that HEPES and Tris environments play a major role on preventing the indirect DNA damages induced by ionising radiation and on the relative biological effectiveness of heavy ion radiation. In general, the RBE calculated from the SFM measurements presents higher values compared to gel electrophoresis data, for plasmids irradiated in all environments. Using a large set of data, obtained from the SFM measurements, it was possible to calculate the survive rate over a larger range, from 88% to 98%, while for gel electrophoresis measurements the survive rates have been calculated only for values between 96% and 99%. While the gel electrophoresis measurements provide information only about the percentage of plasmids DNA that suffered a single DSB, SFM can count the small plasmid fragments produced by multiple DSBs induced in a single plasmid. Consequently, SFM generates more detailed information regarding the amount of the induced DSBs compared to gel electrophoresis, and therefore, RBE can be calculated with more accuracy. Thus, SFM has been proven to be a more precise method to characterize on molecular level the DNA damage induced by ionizing radiations.
Resumo:
The theoretical model and underlying physics described in this thesis are about the interaction of femtosecond-laser and XUV pulses with solids. The key to understand the basics of such interaction is to study the structural response of the materials after laser interaction. Depending on the laser characteristics, laser-solid interaction can result in a wide range of structural responses such as solid-solid phase transitions, vacuum phonon squeezing, ultrafast melting, generation of coherent phonons, etc. During my research work, I have modeled the systems irradiated by low-, medium- and high-laser intensities, and studied different types of structural dynamics of solids at various laser fluences.