6 resultados para Intelligence framework
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Die ubiquitäre Datenverarbeitung ist ein attraktives Forschungsgebiet des vergangenen und aktuellen Jahrzehnts. Es handelt von unaufdringlicher Unterstützung von Menschen in ihren alltäglichen Aufgaben durch Rechner. Diese Unterstützung wird durch die Allgegenwärtigkeit von Rechnern ermöglicht die sich spontan zu verteilten Kommunikationsnetzwerken zusammen finden, um Informationen auszutauschen und zu verarbeiten. Umgebende Intelligenz ist eine Anwendung der ubiquitären Datenverarbeitung und eine strategische Forschungsrichtung der Information Society Technology der Europäischen Union. Das Ziel der umbebenden Intelligenz ist komfortableres und sichereres Leben. Verteilte Kommunikationsnetzwerke für die ubiquitäre Datenverarbeitung charakterisieren sich durch Heterogenität der verwendeten Rechner. Diese reichen von Kleinstrechnern, eingebettet in Gegenstände des täglichen Gebrauchs, bis hin zu leistungsfähigen Großrechnern. Die Rechner verbinden sich spontan über kabellose Netzwerktechnologien wie wireless local area networks (WLAN), Bluetooth, oder UMTS. Die Heterogenität verkompliziert die Entwicklung und den Aufbau von verteilten Kommunikationsnetzwerken. Middleware ist eine Software Technologie um Komplexität durch Abstraktion zu einer homogenen Schicht zu reduzieren. Middleware bietet eine einheitliche Sicht auf die durch sie abstrahierten Ressourcen, Funktionalitäten, und Rechner. Verteilte Kommunikationsnetzwerke für die ubiquitäre Datenverarbeitung sind durch die spontane Verbindung von Rechnern gekennzeichnet. Klassische Middleware geht davon aus, dass Rechner dauerhaft miteinander in Kommunikationsbeziehungen stehen. Das Konzept der dienstorienterten Architektur ermöglicht die Entwicklung von Middleware die auch spontane Verbindungen zwischen Rechnern erlaubt. Die Funktionalität von Middleware ist dabei durch Dienste realisiert, die unabhängige Software-Einheiten darstellen. Das Wireless World Research Forum beschreibt Dienste die zukünftige Middleware beinhalten sollte. Diese Dienste werden von einer Ausführungsumgebung beherbergt. Jedoch gibt es noch keine Definitionen wie sich eine solche Ausführungsumgebung ausprägen und welchen Funktionsumfang sie haben muss. Diese Arbeit trägt zu Aspekten der Middleware-Entwicklung für verteilte Kommunikationsnetzwerke in der ubiquitären Datenverarbeitung bei. Der Schwerpunkt liegt auf Middleware und Grundlagentechnologien. Die Beiträge liegen als Konzepte und Ideen für die Entwicklung von Middleware vor. Sie decken die Bereiche Dienstfindung, Dienstaktualisierung, sowie Verträge zwischen Diensten ab. Sie sind in einem Rahmenwerk bereit gestellt, welches auf die Entwicklung von Middleware optimiert ist. Dieses Rahmenwerk, Framework for Applications in Mobile Environments (FAME²) genannt, beinhaltet Richtlinien, eine Definition einer Ausführungsumgebung, sowie Unterstützung für verschiedene Zugriffskontrollmechanismen um Middleware vor unerlaubter Benutzung zu schützen. Das Leistungsspektrum der Ausführungsumgebung von FAME² umfasst: • minimale Ressourcenbenutzung, um auch auf Rechnern mit wenigen Ressourcen, wie z.B. Mobiltelefone und Kleinstrechnern, nutzbar zu sein • Unterstützung für die Anpassung von Middleware durch Änderung der enthaltenen Dienste während die Middleware ausgeführt wird • eine offene Schnittstelle um praktisch jede existierende Lösung für das Finden von Diensten zu verwenden • und eine Möglichkeit der Aktualisierung von Diensten zu deren Laufzeit um damit Fehlerbereinigende, optimierende, und anpassende Wartungsarbeiten an Diensten durchführen zu können Eine begleitende Arbeit ist das Extensible Constraint Framework (ECF), welches Design by Contract (DbC) im Rahmen von FAME² nutzbar macht. DbC ist eine Technologie um Verträge zwischen Diensten zu formulieren und damit die Qualität von Software zu erhöhen. ECF erlaubt das aushandeln sowie die Optimierung von solchen Verträgen.
Resumo:
Das Management von Kundenbeziehungen hat sich in der klassischen Ökonomie unter dem Begriff »Customer Relationship Management« (kurz: CRM) etabliert und sich in den letzten Jahren als erfolgreicher Ansatz erwiesen. In der grundlegenden Zielsetzung, wertvolle, d.h. profitable und kreditwürdige Kunden an ein Unternehmen zu binden, kommen Business-Intelligence Technologien zur Generierung von Kundenwissen aus kundenbezogenen Daten zum Einsatz. Als technologische Plattform der Kommunikation und Interaktion gewähren Business Communities einen direkten Einblick in die Gedanken und Präferenzen der Kunden. Von Business-Communitybasiertem Wissen der Kunden und über Kunden können individuelle Kundenbedürfnisse, Verhaltensweisen und damit auch wertvolle (potenzielle, profilgleiche) Kunden abgeleitet werden, was eine differenziertere und selektivere Behandlung der Kunden möglich macht. Business Communities bieten ein umfassendes Datenpotenzial, welches jedoch bis dato für das CRM im Firmenkundengeschäft respektive die Profilbildung noch nicht genutzt wird. Synergiepotenziale von der Datenquelle "Business Community" und der Technologie "Business Intelligence" werden bislang vernachlässigt. An dieser Stelle setzt die Arbeit an. Das Ziel ist die sinnvolle Zusammenführung beider Ansätze zu einem erweiterten Ansatz für das Management der irmenkundenbeziehung. Dazu wird ein BIgestütztes CRM-Konzept für die Generierung, Analyse und Optimierung von Kundenwissen erarbeitet, welches speziell durch den Einsatz einer B2B-Community gewonnen und für eine Profilbildung genutzt wird. Es soll durch die Anbindung von Fremddatenbanken Optimierung finden: In den Prozess der Wissensgenerierung fließen zur Datenqualifizierung und -quantifizierung externe (Kunden-) Daten ein, die von Fremddatenbanken (wie z.B. Information Provider, Wirtschaftsauskunftsdienste) bereitgestellt werden. Der Kern dieser Zielsetzung liegt in der umfassenden Generierung und stetigen Optimierung von Wissen, das den Aufbau einer langfristigen, individuellen und wertvollen Kundenbeziehung unterstützen soll.
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
In this paper, we describe an interdisciplinary project in which visualization techniques were developed for and applied to scholarly work from literary studies. The aim was to bring Christof Schöch's electronic edition of Bérardier de Bataut's Essai sur le récit (1776) to the web. This edition is based on the Text Encoding Initiative's XML-based encoding scheme (TEI P5, subset TEI-Lite). This now de facto standard applies to machine-readable texts used chiefly in the humanities and social sciences. The intention of this edition is to make the edited text freely available on the web, to allow for alternative text views (here original and modern/corrected text), to ensure reader-friendly annotation and navigation, to permit on-line collaboration in encoding and annotation as well as user comments, all in an open source, generically usable, lightweight package. These aims were attained by relying on a GPL-based, public domain CMS (Drupal) and combining it with XSL-Stylesheets and Java Script.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.