1 resultado para Inequality of Opportunity
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Filtro por publicador
- Aberdeen University (5)
- Academic Research Repository at Institute of Developing Economies (6)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (21)
- Aston University Research Archive (16)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (34)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CentAUR: Central Archive University of Reading - UK (28)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (6)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (38)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (43)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Digital Commons @ Center for the Blue Economy - Middlebury Institute of International Studies at Monterey (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (19)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (2)
- Ecology and Society (2)
- Escola Superior de Educação de Paula Frassinetti (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (5)
- Institute of Public Health in Ireland, Ireland (17)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (6)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (191)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório de Administração Pública (REPAP) - Direção-Geral da Qualificação dos Trabalhadores em Funções Públicas (INA), Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (30)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (4)
- Repositorio Institucional de la Universidad de La Laguna (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (20)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- Scielo Saúde Pública - SP (15)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (9)
- Universidad de Alicante (9)
- Universidad del Rosario, Colombia (18)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (2)
- Universidade dos Açores - Portugal (5)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Metodista de São Paulo (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (18)
- Université de Montréal (2)
- Université de Montréal, Canada (17)
- University of Connecticut - USA (2)
- University of Michigan (55)
- University of Queensland eSpace - Australia (79)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The Bieberbach conjecture about the coefficients of univalent functions of the unit disk was formulated by Ludwig Bieberbach in 1916 [Bieberbach1916]. The conjecture states that the coefficients of univalent functions are majorized by those of the Koebe function which maps the unit disk onto a radially slit plane. The Bieberbach conjecture was quite a difficult problem, and it was surprisingly proved by Louis de Branges in 1984 [deBranges1985] when some experts were rather trying to disprove it. It turned out that an inequality of Askey and Gasper [AskeyGasper1976] about certain hypergeometric functions played a crucial role in de Branges' proof. In this article I describe the historical development of the conjecture and the main ideas that led to the proof. The proof of Lenard Weinstein (1991) [Weinstein1991] follows, and it is shown how the two proofs are interrelated. Both proofs depend on polynomial systems that are directly related with the Koebe function. At this point algorithms of computer algebra come into the play, and computer demonstrations are given that show how important parts of the proofs can be automated.