3 resultados para INTERACTING PARTICLE SYSTEM

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The non-stationary nonlinear Navier-Stokes equations describe the motion of a viscous incompressible fluid flow for 0particle method to develop a system of approximate equations. We show that this system can be solved uniquely and globally in time and that its solution has a high degree of spatial regularity. Moreover we prove that the system of approximate solutions has an accumulation point satisfying the Navier-Stokes equations in a weak sense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We performed ab initio calculations of many particle inclusive probabilities for the scattering system 16 MeV-S{^16+} on Ar. The solution of the time-dependent DIRAC-FOCK-SLATER-equation is achieved via a set of coupled-channel equations with energy eigenvalues and matrix elements which are given by static SCF molecular many electron calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To describe the time dependence of an atomic collision system the Dirac equation usually is rewritten in a coupled channel equation. We first discuss part of the approximation used in this approach and the connection of the many particle with the one particle interpretation. The coupled channel equations are solved for the system F{^8+} - Ne using static selfconsistent many electron Dirac-Fock-Slater wavefunctions as basis. The resulting P(b) curves for the creation of a Ne K-hole are in reasonable agreement with the experimental results.