2 resultados para IMPRINTING CENTER REGION
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The screening correction to the coherent pair-production cross section on the oxygen molecule has been calculated using self-consistent relativistic wave functions for the one-center and two-center Coulomb potentials. It is shown that the modification of the wave function due to molecular binding and the interference between contributions from the two atoms have both sizeable effects on the screening correction. The so-obtained coherent pair-production cross section which makes up the largest part of the total atomic cross section was used to evaluate the total nuclear absorption cross section from photon attenuation measurements on liquid oxygen. The result agrees with cross sections for other nuclei if A-scaling is assumed. The molecular effect on the pair cross section amounts to 15 % of the nuclear cross section in the {\delta-resonance} region.
Resumo:
Water shortage is one of the major constraints for production of horticultural crops in arid and semiarid regions. A field experiment was conducted to determine irrigation water and fertilizer use efficiency, growth and yield of tomato under clay pot irrigation at the experimental site of Sekota Dryland Agricultural Research Center, Lalibela, Ethiopia in 2009/10. The experiment comprised of five treatments including furrow irrigated control and clay pot irrigation with different plant population and fertilization methods, which were arranged in Randomized Complete Block Design with three replications. The highest total and marketable fruit yields were obtained from clay pot irrigation combined with application of nitrogen fertilizer with irrigation water irrespective of difference in plant population. The clay pot irrigation had seasonal water use of up to 143.71 mm, which resulted in significantly higher water use efficiency (33.62 kg m^-3) as compared to the furrow irrigation, which had a seasonal water use of 485.50 mm, and a water use efficiency of 6.67 kg m^-3. Application of nitrogen fertilizer with irrigation water in clay pots improved fertilizer use efficiency of tomato by up to 52% than band application with furrow or clay pot irrigation. Thus, clay pot irrigation with 33,333 plants ha^-1 and nitrogen fertilizer application with irrigation water in clay pots was the best method for increasing the yield of tomato while economizing the use of water and nitrogen fertilizer in a semiarid environment.