3 resultados para IMML and Visual IMML
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Presentation at the 1997 Dagstuhl Seminar "Evaluation of Multimedia Information Retrieval", Norbert Fuhr, Keith van Rijsbergen, Alan F. Smeaton (eds.), Dagstuhl Seminar Report 175, 14.04. - 18.04.97 (9716). - Abstract: This presentation will introduce ESCHER, a database editor which supports visualization in non-standard applications in engineering, science, tourism and the entertainment industry. It was originally based on the extended nested relational data model and is currently extended to include object-relational properties like inheritance, object types, integrity constraints and methods. It serves as a research platform into areas such as multimedia and visual information systems, QBE-like queries, computer-supported concurrent work (CSCW) and novel storage techniques. In its role as a Visual Information System, a database editor must support browsing and navigation. ESCHER provides this access to data by means of so called fingers. They generalize the cursor paradigm in graphical and text editors. On the graphical display, a finger is reflected by a colored area which corresponds to the object a finger is currently pointing at. In a table more than one finger may point to objects, one of which is the active finger and is used for navigating through the table. The talk will mostly concentrate on giving examples for this type of navigation and will discuss some of the architectural needs for fast object traversal and display. ESCHER is available as public domain software from our ftp site in Kassel. The portable C source can be easily compiled for any machine running UNIX and OSF/Motif, in particular our working environments IBM RS/6000 and Intel-based LINUX systems. A porting to Tcl/Tk is under way.
Resumo:
People possess different sensory modalities to detect, interpret, and efficiently act upon various events in a complex and dynamic environment (Fetsch, DeAngelis, & Angelaki, 2013). Much empirical work has been done to understand the interplay of modalities (e.g. audio-visual interactions, see Calvert, Spence, & Stein, 2004). On the one hand, integration of multimodal input as a functional principle of the brain enables the versatile and coherent perception of the environment (Lewkowicz & Ghazanfar, 2009). On the other hand, sensory integration does not necessarily mean that input from modalities is always weighted equally (Ernst, 2008). Rather, when two or more modalities are stimulated concurrently, one often finds one modality dominating over another. Study 1 and 2 of the dissertation addressed the developmental trajectory of sensory dominance. In both studies, 6-year-olds, 9-year-olds, and adults were tested in order to examine sensory (audio-visual) dominance across different age groups. In Study 3, sensory dominance was put into an applied context by examining verbal and visual overshadowing effects among 4- to 6-year olds performing a face recognition task. The results of Study 1 and Study 2 support default auditory dominance in young children as proposed by Napolitano and Sloutsky (2004) that persists up to 6 years of age. For 9-year-olds, results on privileged modality processing were inconsistent. Whereas visual dominance was revealed in Study 1, privileged auditory processing was revealed in Study 2. Among adults, a visual dominance was observed in Study 1, which has also been demonstrated in preceding studies (see Spence, Parise, & Chen, 2012). No sensory dominance was revealed in Study 2 for adults. Potential explanations are discussed. Study 3 referred to verbal and visual overshadowing effects in 4- to 6-year-olds. The aim was to examine whether verbalization (i.e., verbally describing a previously seen face), or visualization (i.e., drawing the seen face) might affect later face recognition. No effect of visualization on recognition accuracy was revealed. As opposed to a verbal overshadowing effect, a verbal facilitation effect occurred. Moreover, verbal intelligence was a significant predictor for recognition accuracy in the verbalization group but not in the control group. This suggests that strengthening verbal intelligence in children can pay off in non-verbal domains as well, which might have educational implications.
Resumo:
The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).