2 resultados para Historical framework
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
RESUMO: A economia solidária é aqui apresentada como um movimento social emancipatório e como uma das formas de resistências das trabalhadoras e trabalhadores ao modelo de desenvolvimento capitalista. O movimento contemporâneo de economia solidária abrange o processo de produção, comercialização e finanças. A economia solidária é caracterizada pela posse coletiva dos meios de produção e pelo controle dos trabalhadores dos empreendimentos através de autogestão, cooperação e solidariedade. Os empreendimentos econômicos solidários se organizam sob a forma de cooperativas, associações e grupos informais. Um dos maiores desafios da economia solidária está no campo educativo, porque impõe a desconstrução dos princípios individualistas e privatistas preponderantes na maioria das relações econômicas, e exige a construção de outra cultura pautada na solidariedade. Nesse sentido, a pesquisa realizada, tem como objeto de estudo as metodologias de incubação fomentadas pelas universidades nas ações de economia solidária. Para isso, analisamos as experiências da Incubadora de Economia Solidária da Universidade Federal da Paraíba - Brasil e da Incubadora na Universidade de Kassel- Alemanha – Verein für Solidarische Ökonomie e.V. A pesquisa buscou conhecer e analisar as práticas de incubagem das universidades na economia solidária, como processos de mudança social. A coleta de informações foi realizada, tendo por base, uma revisão bibliográfica, relatórios das Incubadoras, registros fotográficos, observação participante e entrevistas semi-estruturadas. Os resultados da análise indicam que as metodologias de incubação na economia solidaria, por terem um caráter aberto e participativo, por considerarem os condicionamentos históricos e as diferentes culturas, fazem-nas portadoras de mudanças sociais. Esta metodologia pode ser utilizada por diferentes atores, em lugares e situações distintas. A pesquisa indica ainda, a centralidade da questão ecológica como elemento que poderá unificar o movimento internacional de economia solidária.
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------