4 resultados para Helium.

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Summation ueber des vollstaendige Spektrum des Atoms, die in der Stoehrungstheorie zweiter Ordnung vorkommt, wurde mit Hilfe der Greenschen Funktion Methode berechnet. Die Methode der Greenschen Funktion verlangt die Berechnung der unterschiedlichen Greenschen Funktionen: eine Coulomb-Greensche-Funktion im Fall von wasserstoffaehnlichen Ionen und eine Zentral-feld-Greensche-Funktion im Fall des Vielelektronen-Atoms. Die entwickelte Greensche Funktion erlaubte uns die folgenden atomaren Systeme in die Zweiphotonenionisierung der folgenden atomaren Systeme zu untersuchen: - wasserstoffaehnliche Ionen, um relativistische und Multipol-Effekte aufzudecken, - die aeussere Schale des Lithium; Helium und Helium-aehnliches Neon im Grundzustand, um taugliche Modelle des atomaren Feldes zu erhalten, - K- und L-Schalen des Argon, um die Vielelektronen-Effekte abzuschaetzen. Zusammenfassend, die relativistische Effekte ergeben sich in einer allgemeinen Reduzierung der Zweiphotonen Wirkungsquerschnitte. Zum Beispiel, betraegt das Verhaeltnis zwischen den nichtrelativistischen und relativistischen Wirkungsquerschnitten einen Faktor zwei fuer wasserstoffaehnliches Uran. Ausser dieser relativistischen Kontraktion, ist auch die relativistische Aufspaltung der Zwischenzustaende fuer mittelschwere Ionen sichtbar. Im Gegensatz zu den relativistischen Effekten, beeinflussen die Multipol-Effekte die totalen Wirkungsquerschnitte sehr wenig, so dass die Langwellennaeherung mit der exakten Naeherung fuer schwere Ionen sogar innerhalb von 5 Prozent uebereinstimmt. Die winkelaufgeloesten Wirkungsquerschnitte werden durch die relativistischen Effekte auf eine beeindruckende Weise beeinflusst: die Form der differentiellen Wirkungsquerschnitte aendert sich (qualitativ) abhaengig von der Photonenenergie. Ausserdem kann die Beruecksichtigung der hoeheren Multipole die elektronische Ausbeute um einen Faktor drei aendern. Die Vielelektronen-Effekte in der Zweiphotonenionisierung wurden am Beispiel der K- und L-Schalen des Argon analysiert. Hiermit wurden die totalen Wirkungsquerschnitte in einer Ein-aktives-Elektron-Naeherung (single-active-electron approximation) berechnet. Es hat sich herausgestellt, dass die Elektron--Elektron-Wechselwirkung sehr wichtig fuer die L-Schale und vernachlaessigbar fuer die K-Schale ist. Das bedeutet, dass man die totalen Wirkungsquerschnitte mit wasserstoffaehnlichen Modellen im Fall der K-Schale beschreiben kann, aber fuer die L-Schale fortgeschrittene Modelle erforderlich sind. Die Ergebnisse fuer Vielelektronen-Atome wurden mittels einer Dirac-Zentral-feld-Greenschen Funktion erlangt. Ein numerischer Algorithmus wurde urspruenglich von McGuire (1981) fuer der Schroedinger-Zentral-feld-Greensche Funktion eingefuehrt. Der Algorithmus wurde in dieser Arbeit zum ersten Mal fuer die Dirac-Gleichung angewandt. Unser Algorithmus benutzt die Kummer- und Tricomi-Funktionen, die mit Hilfe eines zuverlaessigen, aber noch immer langsamen Programmes berechnet wurden. Die Langsamkeit des Programms begrenzt den Bereich der Aufgaben, die effizient geloest werden koennen. Die Zentral-feld-Greensche Funktion konnte bei den folgenden Problemen benutzt werden: - Berechnung der Zweiphotonen-Zerfallsraten, - Berechnung der Zweiphotonenanregung und -ionisierungs-Wirkungsquerschnitte, - Berechnung die Multiphotonenanregung und -ionisierungs-Wirkungsquerschnitte, - Berechnung einer atomaren Vielelektronen-Green-Funktion. Von diesen Aufgaben koennen nur die ersten beiden in angemessener Zeit geloest werden. Fuer die letzten beiden Aufgaben ist unsere Implementierung zu langsam und muss weiter verbessert werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dünnen Schichtsystemen, in denen es Grenzflächen zwischen antiferromagnetischen (AF) und ferromagnetischen (FM) Bereichen gibt, kann eine unidirektionale magnetische Anisotropie beobachtet werden: die Austauschanisotropie, auch "Exchange-Bias Effekt" genannt. Die Austauschanisotropie ist die Folge einer magnetischen Kopplung zwischen AF und FM. Makroskopisch äußert sich diese Anisotropie in einer Verschiebung der Magnetisierungskurve entlang der Magnetfeldachse. Anwendung findet die Austauschanisotropie z. B. in Spin-Valve Sensoren, deren Funktionsprinzip auf dem Riesen-Magnetowiderstand (engl. giant magnetoresistance, GMR) beruht. Die (thermische) Stabilität der Austauschanisotropie ist eine wichtige Voraussetzung für technische Anwendungen. Im Rahmen dieser Arbeit wurde untersucht, durch welche Materialeigenschaften die Austauschanisotropie in Schichtsystemen mit antiferromagnetischem Nickeloxid (NiO) bestimmt wird. Die Schichten wurden durch (reaktive) Kathodenzerstäubung hergestellt. Durch Variation der Depositionsbedingungen wurden Zusammensetzung und Struktur der NiO-Schichten verändert. Die Ergebnisse systematischer Analysen dieser Größen werden aufgeführt. Der Vergleich dieser Materialanalysen mit magnetischen Messungen an NiO/NiFe Schichtsystemen fšuhrt zu dem Ergebnis, dass die chemische Zusammensetzung und die Struktur der NiO-Schichten die thermische Stabilität der Austauschanisotropie entscheidend beeinflussen. Es wird zusätzlich gezeigt, dass die Stabilität der Austauschanisotropie durch einen Temperprozess im Anschluss an die Herstellung der Schichtsysteme entscheidend verbessert werden kann. Thermisch aktivierte, magnetische Relaxationsprozesse können außerdem zur Erhöhung der Austauschanisotropie führen. Des Weiteren werden zwei neuartige Methoden zur Modifizierung der Austauschanisotropie vorgestellt. Dabei wird gezeigt, dass durch die Bestrahlung der Schichtsysteme mit Helium-Ionen die magnetischen Eigenschaften der Schichtsysteme gezielt verändert und optimiert werden können. Der Einfluss der Ionenbestrahlung auf die Austauschanisotropie in NiO/NiFe Schichtsystemen und auf den Magnetowiderstand in FeMn basierten Spin-Valves steht dabei im Vordergrund der experimentellen Untersuchungen. Eine weitere Möglichkeit zur Modifizierung der Austauschanisotropie ist die Bestrahlung der Schichtsysteme mit kurzen Laserpulsen. Durch einen thermomagnetischen Prozess kann die Austauschanisotropie lokal verändert werden. Experimentelle Ergebnisse von diesem hier erstmals verwendeten Verfahren werden vorgestellt und interpretiert. Mit den beiden genannten Methoden ist es möglich, die Eigenschaften der Austauschanisotropie in Schichtsystemen nachträglich gezielt zu modifizieren.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden magnetische Zweischichtsysteme mit Exchange-Bias-Effekt und künstlichen lateralen Domänenstrukturen auf den Domänenwandwiderstand (DWR) untersucht. Die Erzeugung dieser Domänenmuster erfolgte über Ion Bombardment induced Magnetic Patterning (IBMP), d.h. 10 keV Helium-Ionenbeschuss durch Schattenmasken auf der Probenoberfläche. Mithilfe eines externen Magnetfelds können anschließend die Domänenwände gezielt ein- und ausgeschaltet werden. Zur Untersuchung des DWR-Effekts müssen einige physikalische Voraussetzungen erfüllt sein, wodurch die Herstellung und Charakterisierung entsprechender magnetischer Domänenstrukturen eine der Hauptaufgaben war. Die folgenden Themen werden in dieser Arbeit im Einzelnen behandelt: • Anwendung verschiedener Lithographie-Verfahren zur Erzeugung von Schattenmasken: Für die Verkleinerung der magnetischen Strukturen bis in den Sub-µm-Bereich waren neue Verfahren notwendig. Hierfür wurden die Interferenz- und die NanoImprint-Lithographie eingesetzt. Außerdem wurden Metallnetzchen als Schattenmasken für den Ionenbeschuss genutzt. • Charakterisierung der künstlichen Domänenmuster: Identifikation des Domänenwandtyps anhand von MFM-Messungen unter Zuhilfenahme mikromagnetischer Simulationen und Validierung der Ergebnisse mithilfe von PEEM-Messungen. Untersuchung der Domänenmuster auf die Domänenbreite und Domänenwandbreite in Abhängigkeit der verwendeten Strukturgrößen, Geometrien und Materialien. Magnetische Strukturierung von Exchange-Bias-Proben mit einem nicht-metallischen Antiferromagneten. • Domänenwandwiderstand: Untersuchung des DWR-Effekts in metallischen Exchange-Bias-Proben bei Raumtemperatur sowohl über viele als auch über einzelne Domänenwände sowie temperaturabhängig unterhalb der Raumtemperatur. Untersuchung des DWR-Effekts in oxidischen Zweilagenschichtsystemen bei Raumtemperatur über viele sowie über einzelne Domänenwände. Die Untersuchungen erfolgten mit Vibrationsmagnetometrie (VSM) und magnetooptischem Kerr-Effekt (MOKE), Rasterkraft-/Magnetokraft- und Rasterelektronenmikroskopie (AFM, MFM, REM), Photoemissions-Elektronenmikroskopie (PEEM) und Magnetotransportmessungen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intensive, ultrakurze Laserpulse regen Festkörper in einen Zustand an, in dem die Elektronen hohe Temperaturen erlangen, während das Gitter kalt bleibt. Die heißen Elektronen beeinflussen das sog. Laser-angeregte interatomare Potential bzw. die Potentialenergiefläche, auf der die Ionen sich bewegen. Dieses kann neben anderen ultrakurzen Prozessen zu Änderungen der Phononfrequenzen (phonon softening oder phonon hardening) führen. Viele ultrakurze strukturelle Phänomene in Festkörpern hängen bei hohen Laseranregungen von Änderungen der Phononfrequenzen bei niedrigeren Anregungen ab. Um die Laser-bedingten Änderungen des Phononenspektrums von Festkörpern beschreiben zu können, haben wir ein auf Temperatur-abhängiger Dichtefunktionaltheorie basierendes Verfahren entwickelt. Die dramatischen Änderungen nach einer Laseranregung in der Potentialenergiefläche werden durch die starke Veränderung der Zustandsdichte und der Besetzungen der Elektronen hervorgerufen. Diese Änderungen in der Zustandsdichte und den Besetzungszahlen können wir mit unserer Methode berechnen, um dann damit das Verhalten der Phononen nach einer Laseranregung zu analysieren. Auf diese Art und Weise studierten wir den Einfluss einer Anregung mit einem intensiven, ultrakurzen Laserpuls auf repräsentative Phonon Eigenmoden in Magnesium, Kupfer und Aluminium. Wir stellten dabei in manchen Gitterschwingungen entweder eine Abnahme (softening) und in anderen eine Zunahme (hardening) der Eigenfrequenz fest. Manche Moden zeigten bei Variation der Laseranregungsstärke sogar beide Verhaltensweisen. Das eine Phonon-Eigenmode ein hardening und softening zeigen kann, wird durch das Vorhandensein von van Hove Singularitäten in der elektronischen Zustandsdichte des betrachteten Materials erklärt. Für diesen Fall stellt unser Verfahren zusammen mit der Sommerfeld-Entwicklung die Eigenschaften der Festkörper Vibrationen in Verbindung mit den Laser induzierten Veränderungen in den elektronischen Besetzungen für verschiedene Phonon-eingefrorene Atomkonfigurationen. Auch die absolute Größe des softening und hardening wurde berechnet. Wir nehmen an, dass unsere Theorie Licht in die Effekte der Laseranregung von verschiedenen Materialien bringt. Außerdem studierten wir mit Hilfe von Dichtefunktionaltheorie die strukturellen Material-Eigenschaften, die durch kurze XUV Pulse induziert werden. Warme dichte Materie in Ultrakurzpuls angeregten Magnesium wurde analysiert und verglichen mit den Ergebnissen bei durch Laser Anregung bedingten Änderungen. Unter Verwendung von elektronischer-Temperatur-abhängiger Dichtefunktionaltheorie wurden die Änderungen in den Bindungseigenschaften von warmen dichten Magnesium studiert. Wir stellten dabei beide Effekte, Verstärkung und Abschwächung von Bindungen, bei jeweils verschiedenen Phonon Eigenmoden von Magnesium auf Grund von der Erzeugung von Rumpflöchern und dem Vorhandensein von heißen Elektronen fest. Die zusätzliche Erzeugung von heißen Elektronen führt zu einer Änderung der Bindungscharakteristik, die der Änderung, die durch die bereits vorhandenen Rumpflöcher hervorgerufen wurde, entgegen wirkt. Die thermischen Eigenschaften von Nanostrukturen sind teilweise sehr wichtig für elektronische Bauteile. Wir studierten hier ebenfalls den Effekt einer einzelnen Graphen Lage auf Kupfer. Dazu untersuchten wir mit Dichtefunktionaltheorie die strukturellen- und Schwingungseigenschaften von Graphen auf einem Kupfer Substrat. Wir zeigen, dass die schwache Wechselwirkung zwischen Graphen und Kupfer die Frequenz der aus der Ebene gerichteten akustischen Phonon Eigenmode anhebt und die Entartung zwischen den aus der Ebene gerichteten akustischen und optischen Phononen im K-Punkt des Graphen Spektrums aufhebt. Zusätzlich führten wir ab initio Berechnungen zur inelastischen Streuung eines Helium Atoms mit Graphen auf einem Kuper(111) Substrat durch. Wir berechneten dazu das Leistungsspektrum, das uns eine Idee über die verschiedenen Gitterschwingungen des Graphene-Kuper(111) Systems gibt, die durch die Kollision des Helium Atom angeregt werden. Wir brachten die Positionen der Peaks im Leistungsspektrum mit den Phonon Eigenfrequenzen, die wir aus den statischen Rechnungen erhalten haben, in Beziehung. Unsere Ergebnisse werden auch verglichen mit den Ergebnissen experimenteller Daten zur Helium Streuung an Graphen-Kupfer(111) Oberflächen.